ALEX Classroom Resources

ALEX Classroom Resources  
   View Standards     Standard(s): [MA2019] REG-7 (7) 22 :
22. Solve real-world and mathematical problems involving area, volume, and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right rectangular prisms.
[MA2019] ACC-7 (7) 39 :
39. Solve real-world and mathematical problems involving area, volume, and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right rectangular prisms. [Grade 7, 22]
[MA2019] ACC-7 (7) 41 :
41. Use formulas to calculate the volumes of three-dimensional figures to solve real-world problems. [Grade 8, 30]
[MA2019] REG-8 (8) 30 :
30. Use formulas to calculate the volumes of three-dimensional figures (cylinders, cones, and spheres) to solve real-world problems.
[MA2019] GEO-19 (9-12) 17 :
17. Model and solve problems using surface area and volume of solids, including composite solids and solids with portions removed.

a. Give an informal argument for the formulas for the surface area and volume of a sphere, cylinder, pyramid, and cone using dissection arguments, Cavalieri's Principle, and informal limit arguments.

b. Apply geometric concepts to find missing dimensions to solve surface area or volume problems.
Subject: Mathematics (7 - 12)
Title: Popcorn Picker: Volumes of Solid Shapes
URL: https://aptv.pbslearningmedia.org/resource/mgbh-math-g-popcornpic/popcorn-picker-volumes-of-solid-shapes/
Description:

Experiment with the volume of two cylinders made from the same size paper. This interactive exercise focuses on using what you know about cylinders to make a prediction about their volume and then requires calculating the actual volume to see if your prediction was accurate.



   View Standards     Standard(s): [MA2019] GEO-19 (9-12) 17 :
17. Model and solve problems using surface area and volume of solids, including composite solids and solids with portions removed.

a. Give an informal argument for the formulas for the surface area and volume of a sphere, cylinder, pyramid, and cone using dissection arguments, Cavalieri's Principle, and informal limit arguments.

b. Apply geometric concepts to find missing dimensions to solve surface area or volume problems.
[MA2019] PRE-19 (9-12) 31 :
31. Graph conic sections from second-degree equations, extending from circles and parabolas to ellipses and hyperbolas, using technology to discover patterns.

a. Graph conic sections given their standard form.

Example: The graph of x2/9 + (y-3)2/4=1 will be an ellipse centered at (0,3) with major axis 3 and minor axis 2, while the graph of x2/9 + (y-3)2/4=1 will be a hyperbola centered at (0,3) with asymptotes with slope ±3/2.

b. Identify the conic section that will be formed, given its equation in general form.

Example: 5y2 - 25x2=-25 will be a hyperbola.
Subject: Mathematics (9 - 12)
Title: Volumes by Cross Section
URL: https://www.ck12.org/c/calculus/volume-by-cross-section/lesson/Volumes-by-Cross-Section-CALC/?referrer=concept_details
Description:

Remember how to compute the volume of a cylinder or prism using the cross-sectional area and length (height) of the object? If the cross-sectional area is known and constant along the height, the volume calculation is easy. But, what if the cross-sectional area changes in a known manner along the line that is the height, like it does for a cone or pyramid? How could a single method in calculus be used to determine the volume of either of these types of solids?

This informational material will explain how to calculate the volume of special solid figures, like cones, by using cross-sections from the solid figure. The three-dimensional case of Cavalieri's Principle is introduced. There are corresponding videos available. Practice questions with a PDF answer key are provided.



   View Standards     Standard(s): [MA2019] GEO-19 (9-12) 17 :
17. Model and solve problems using surface area and volume of solids, including composite solids and solids with portions removed.

a. Give an informal argument for the formulas for the surface area and volume of a sphere, cylinder, pyramid, and cone using dissection arguments, Cavalieri's Principle, and informal limit arguments.

b. Apply geometric concepts to find missing dimensions to solve surface area or volume problems.
[MA2019] PRE-19 (9-12) 31 :
31. Graph conic sections from second-degree equations, extending from circles and parabolas to ellipses and hyperbolas, using technology to discover patterns.

a. Graph conic sections given their standard form.

Example: The graph of x2/9 + (y-3)2/4=1 will be an ellipse centered at (0,3) with major axis 3 and minor axis 2, while the graph of x2/9 + (y-3)2/4=1 will be a hyperbola centered at (0,3) with asymptotes with slope ±3/2.

b. Identify the conic section that will be formed, given its equation in general form.

Example: 5y2 - 25x2=-25 will be a hyperbola.
Subject: Mathematics (9 - 12)
Title: Volume by Cross Section: Volume of the Cone Interactive
URL: https://www.ck12.org/assessment/tools/geometry-tool/plix.html?eId=MAT.CAL.304.2&questionId=571e44deda2cfe2028dff6e5&artifactID=2545247&conceptCollectionHandle=calculus-::-volume-b&plix_redirect=1
Description:

Students will test their knowledge of calculating the volume of cones using cross-sections on a graph in this interactive.

How do you find the volume of a cone given its cross-section? Consider half the cross-section of the cone where the region is formed by the lines y = 0, x = 45 and the changing standard equation.  

In this interactive, students will:



   View Standards     Standard(s): [MA2015] GEO (9-12) 35 :
35 ) Give an informal argument for the formulas for the circumference of a circle; area of a circle; and volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments. [G-GMD1]

[MA2015] PRE (9-12) 38 :
38 ) (+) Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures. [G-GMD2]

[MA2019] REG-7 (7) 19 :
19. Describe the two-dimensional figures created by slicing three-dimensional figures into plane sections.
[MA2019] ACC-7 (7) 35 :
35. Describe the two-dimensional figures created by slicing three-dimensional figures into plane sections. [Grade 7, 19]
[MA2019] ACC-7 (7) 41 :
41. Use formulas to calculate the volumes of three-dimensional figures to solve real-world problems. [Grade 8, 30]
[MA2019] REG-8 (8) 30 :
30. Use formulas to calculate the volumes of three-dimensional figures (cylinders, cones, and spheres) to solve real-world problems.
[MA2019] GEO-19 (9-12) 16 :
16. Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.
[MA2019] GEO-19 (9-12) 17 :
17. Model and solve problems using surface area and volume of solids, including composite solids and solids with portions removed.

a. Give an informal argument for the formulas for the surface area and volume of a sphere, cylinder, pyramid, and cone using dissection arguments, Cavalieri's Principle, and informal limit arguments.

b. Apply geometric concepts to find missing dimensions to solve surface area or volume problems.
[MA2019] GEO-19 (9-12) 23 :
23. Develop definitions of rotation, reflection, and translation in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
Subject: Mathematics (9 - 12), Mathematics (7 - 12)
Title: Cone Surface Area | School Yourself Geometry
URL: https://aptv.pbslearningmedia.org/resource/geometry-cone-surface/cone-surface-area-school-yourself-geometry/
Description:

Use the Pythagorean theorem to unroll a cone and find its surface area with this interactive video from the School Yourself Geometry series.



   View Standards     Standard(s): [MA2015] GEO (9-12) 35 :
35 ) Give an informal argument for the formulas for the circumference of a circle; area of a circle; and volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments. [G-GMD1]

[MA2015] PRE (9-12) 38 :
38 ) (+) Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures. [G-GMD2]

[MA2019] ACC-7 (7) 41 :
41. Use formulas to calculate the volumes of three-dimensional figures to solve real-world problems. [Grade 8, 30]
[MA2019] REG-8 (8) 30 :
30. Use formulas to calculate the volumes of three-dimensional figures (cylinders, cones, and spheres) to solve real-world problems.
[MA2019] GEO-19 (9-12) 17 :
17. Model and solve problems using surface area and volume of solids, including composite solids and solids with portions removed.

a. Give an informal argument for the formulas for the surface area and volume of a sphere, cylinder, pyramid, and cone using dissection arguments, Cavalieri's Principle, and informal limit arguments.

b. Apply geometric concepts to find missing dimensions to solve surface area or volume problems.
Subject: Mathematics (9 - 12), Mathematics (7 - 12)
Title: Cavalieri's Principle (3D) | School Yourself Geometry
URL: https://aptv.pbslearningmedia.org/resource/geometry-cavalieri-3d/cavalieris-principle-3d-school-yourself-geometry/
Description:

Apply Cavalieri's principle to determine when two solids must definitely have the same volume with this interactive video from the School Yourself Geometry series. 



   View Standards     Standard(s): [MA2015] GEO (9-12) 35 :
35 ) Give an informal argument for the formulas for the circumference of a circle; area of a circle; and volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments. [G-GMD1]

[MA2015] PRE (9-12) 38 :
38 ) (+) Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures. [G-GMD2]

[MA2019] ACC-7 (7) 41 :
41. Use formulas to calculate the volumes of three-dimensional figures to solve real-world problems. [Grade 8, 30]
[MA2019] REG-8 (8) 30 :
30. Use formulas to calculate the volumes of three-dimensional figures (cylinders, cones, and spheres) to solve real-world problems.
[MA2019] GEO-19 (9-12) 17 :
17. Model and solve problems using surface area and volume of solids, including composite solids and solids with portions removed.

a. Give an informal argument for the formulas for the surface area and volume of a sphere, cylinder, pyramid, and cone using dissection arguments, Cavalieri's Principle, and informal limit arguments.

b. Apply geometric concepts to find missing dimensions to solve surface area or volume problems.
Subject: Mathematics (9 - 12), Mathematics (7 - 12)
Title: Volumes for Different Prisms (and Cylinders) | School Yourself Geometry
URL: https://aptv.pbslearningmedia.org/resource/geometry-other-prism-volume/prism-volume-school-yourself-geometry/
Description:

How can you find the volume of prisms that aren't rectangular? Learn how with this interactive video from the School Yourself Geometry series. 



   View Standards     Standard(s): [MA2015] PRE (9-12) 38 :
38 ) (+) Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures. [G-GMD2]

[MA2019] ACC-7 (7) 41 :
41. Use formulas to calculate the volumes of three-dimensional figures to solve real-world problems. [Grade 8, 30]
[MA2019] REG-8 (8) 30 :
30. Use formulas to calculate the volumes of three-dimensional figures (cylinders, cones, and spheres) to solve real-world problems.
[MA2019] GEO-19 (9-12) 17 :
17. Model and solve problems using surface area and volume of solids, including composite solids and solids with portions removed.

a. Give an informal argument for the formulas for the surface area and volume of a sphere, cylinder, pyramid, and cone using dissection arguments, Cavalieri's Principle, and informal limit arguments.

b. Apply geometric concepts to find missing dimensions to solve surface area or volume problems.
Subject: Mathematics (9 - 12), Mathematics (7 - 12)
Title: Sphere Volume | School Yourself Geometry
URL: https://aptv.pbslearningmedia.org/resource/geometry-sphere-volume/sphere-volume-school-yourself-geometry/
Description:

Use the Pythagorean theorem and apply Cavalieri's principle to cones and cylinders to find the volume of a sphere with this interactive video from the School Yourself Geometry series. 



   View Standards     Standard(s): [MA2019] ACC-7 (7) 41 :
41. Use formulas to calculate the volumes of three-dimensional figures to solve real-world problems. [Grade 8, 30]
[MA2019] REG-8 (8) 30 :
30. Use formulas to calculate the volumes of three-dimensional figures (cylinders, cones, and spheres) to solve real-world problems.
[MA2019] GEO-19 (9-12) 17 :
17. Model and solve problems using surface area and volume of solids, including composite solids and solids with portions removed.

a. Give an informal argument for the formulas for the surface area and volume of a sphere, cylinder, pyramid, and cone using dissection arguments, Cavalieri's Principle, and informal limit arguments.

b. Apply geometric concepts to find missing dimensions to solve surface area or volume problems.
Subject: Mathematics (7 - 12)
Title: You Pour, I Choose: Volumes of Cylinders
URL: https://aptv.pbslearningmedia.org/resource/mgbh-math-g-youpour/you-pour-i-choose-volumes-of-cylinders/
Description:

Compare the volume of varied cylindrical glasses filled to different heights. This interactive exercise focuses on using what you know about cylinders to make a prediction about their volume and then requires calculating the actual volume to see if your prediction was accurate.

This resource is part of the Math at the Core: Middle School collection.



   View Standards     Standard(s): [MA2019] ACC-7 (7) 41 :
41. Use formulas to calculate the volumes of three-dimensional figures to solve real-world problems. [Grade 8, 30]
[MA2019] REG-8 (8) 30 :
30. Use formulas to calculate the volumes of three-dimensional figures (cylinders, cones, and spheres) to solve real-world problems.
[MA2019] GEO-19 (9-12) 17 :
17. Model and solve problems using surface area and volume of solids, including composite solids and solids with portions removed.

a. Give an informal argument for the formulas for the surface area and volume of a sphere, cylinder, pyramid, and cone using dissection arguments, Cavalieri's Principle, and informal limit arguments.

b. Apply geometric concepts to find missing dimensions to solve surface area or volume problems.
Subject: Mathematics (7 - 12)
Title: Meatballs: Volumes of Spheres and Cylinders
URL: https://aptv.pbslearningmedia.org/resource/mgbh-math-g-meatballs/meatballs-volumes-of-spheres-and-cylinders/
Description:

Use your problem-solving skills to find out if the pot will overflow when Dan adds meatballs to his pasta sauce. This interactive exercise focuses on using the volume equations for cylinders and spheres to figure out the multistep problem of how many meatballs it would take to fill the space left in the pot.

This resource is part of the Math at the Core: Middle School collection.



   View Standards     Standard(s): [MA2015] PRE (9-12) 38 :
38 ) (+) Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures. [G-GMD2]

[MA2019] ACC-7 (7) 41 :
41. Use formulas to calculate the volumes of three-dimensional figures to solve real-world problems. [Grade 8, 30]
[MA2019] REG-8 (8) 30 :
30. Use formulas to calculate the volumes of three-dimensional figures (cylinders, cones, and spheres) to solve real-world problems.
[MA2019] GEO-19 (9-12) 16 :
16. Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.
[MA2019] GEO-19 (9-12) 17 :
17. Model and solve problems using surface area and volume of solids, including composite solids and solids with portions removed.

a. Give an informal argument for the formulas for the surface area and volume of a sphere, cylinder, pyramid, and cone using dissection arguments, Cavalieri's Principle, and informal limit arguments.

b. Apply geometric concepts to find missing dimensions to solve surface area or volume problems.
[MA2019] GEO-19 (9-12) 23 :
23. Develop definitions of rotation, reflection, and translation in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
[MA2019] GEO-19 (9-12) 36 :
36. Use geometric shapes, their measures, and their properties to model objects and use those models to solve problems.
Subject: Mathematics (9 - 12), Mathematics (7 - 12)
Title: Strange Shapes | MIT's Science Out Loud
URL: https://aptv.pbslearningmedia.org/resource/b043dcff-a47f-4027-95c9-1c47a53f5ade/strange-shapes/
Description:

In school, you learn about shapes with sides and edges, but there are weird shapes out there (beyond our 3 dimensions) that defy our normal idea of geometry. QuanQuan and Jenny explain, knit, and 3D print their way through these strange shapes.



   View Standards     Standard(s): [MA2015] GEO (9-12) 35 :
35 ) Give an informal argument for the formulas for the circumference of a circle; area of a circle; and volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments. [G-GMD1]

[MA2019] GEO-19 (9-12) 16 :
16. Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.
[MA2019] GEO-19 (9-12) 17 :
17. Model and solve problems using surface area and volume of solids, including composite solids and solids with portions removed.

a. Give an informal argument for the formulas for the surface area and volume of a sphere, cylinder, pyramid, and cone using dissection arguments, Cavalieri's Principle, and informal limit arguments.

b. Apply geometric concepts to find missing dimensions to solve surface area or volume problems.
Subject: Mathematics (9 - 12), Mathematics (9 - 12)
Title: Geometry Module 3, Topic B: Volume
URL: https://www.engageny.org/resource/geometry-module-3-topic-b-overview
Description:

Students study the basic properties of two-dimensional and three-dimensional space, noting how ideas shift between the dimensions. They learn that general cylinders are the parent category for prisms, circular cylinders, right cylinders, and oblique cylinders, and study why the cross-section of a cylinder is congruent to its base. Next students study the explicit definition of a cone and learn what distinguishes pyramids from general cones, and see how dilations explain why a cross-section taken parallel to the base of a cone is similar to the base.  Students revisit the scaling principle as it applies to volume and then learn Cavalieri’s principle, which describes the relationship between cross-sections of two solids and their respective volumes. This knowledge is all applied to derive the volume formula for cones, and then extended to derive the volume formula for spheres. Module 3 is a natural place to see geometric concepts in modeling situations. Modeling-based problems are found throughout Topic B and include the modeling of real-world objects, the application of density, the occurrence of physical constraints, and issues regarding cost and profit.



ALEX Classroom Resources: 11

Go To Top of page