ALEX Classroom Resources

ALEX Classroom Resources  
   View Standards     Standard(s): [ARTS] MUS (3) 4 :
4) Use standard and/or iconic notation and/or recording technology to document personal rhythmic and melodic musical ideas.

[ARTS] MUS (4) 4 :
4) Use standard and/or iconic notation and/or recording technology to document personal rhythmic, melodic, and simple harmonic musical ideas.

[ARTS] MUS (5) 4 :
4) Use standard and/or iconic notation and/or recording technology to document personal rhythmic, melodic, and two-chord harmonic musical ideas.

[DLIT] (3) 13 :
7) Test and debug a given program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

Examples: Sequencing cards for unplugged activities, online coding practice.

[DLIT] (4) 13 :
7) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

[DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

Subject: Arts Education (3 - 5), Digital Literacy and Computer Science (3 - 5)
Title: Scratch
URL: https://scratch.mit.edu/projects/editor/?tutorial=music
Description:

In this activity from Scratch, students will use coding skills to create their own compositions. 



   View Standards     Standard(s): [DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

Subject: Digital Literacy and Computer Science (5)
Title: Tynker Hour of Code Puzzle: Dragon Dash
URL: https://www.tynker.com/ide/v3?type=course&slug=activity:dragon-dash&chapter=0&lesson=0
Description:

Students solve complex coding puzzles by applying computer programming concepts and enhance STEM learning outcomes as they play a fun coding adventure game. Learn skills such as patterning, sequencing, nested loops, and conditionals, plus critical thinking and problem solving, while leading a personalized dragon to the treasure. This interactive game can be played during a lesson on creating a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs. The estimated time to complete the interactive is 30 minutes. There are more free coding activities at Tynker.



   View Standards     Standard(s): [DLIT] (2) 9 :
3) Construct elements of a simple computer program using basic commands.

Examples: Digital block-based programming, basic robotics.

[DLIT] (3) 13 :
7) Test and debug a given program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

Examples: Sequencing cards for unplugged activities, online coding practice.

[DLIT] (4) 13 :
7) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

[DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

Subject: Digital Literacy and Computer Science (2 - 5)
Title: How to Make a Video Game
URL: https://aptv.pbslearningmedia.org/resource/2143a241-f8d9-4a54-a4a5-b9634797bd28/make-a-video-game/
Description:

Video games are fun to play, but have you ever wondered how to make one? Carmelo, a grad student in the MIT Media Lab, shows how anyone can start learning how to create video games by talking to machines through programming languages using block-based programming. This video can be played to introduce a lesson on computer programming.



   View Standards     Standard(s): [DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

Subject: Digital Literacy and Computer Science (5)
Title: Tynker Hour of Code Puzzle: Debugger
URL: https://www.tynker.com/hour-of-code/debugger
Description:

Students are immersed in a multi-level adventure game cleverly designed to introduce computer programming concepts and improve problem-solving skills. To save the motherboard, kids create a custom hero character and fight bugs! Estimated time: 40 min. A teacher guide and answer key is provided. More free coding activities at www.tynker.com/hour-of-code.



   View Standards     Standard(s): [DLIT] (5) 8 :
2) Create an algorithm to solve a problem while detecting and debugging logical errors within the algorithm.

Examples: Program the movement of a character, robot, or person through a maze.
Define a variable that can be changed or updated.

[DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

[DLIT] (6) 14 :
8) Create a program that initializes a variable.

Example: Create a flowchart in which the variable or object returns to a starting position upon completion of a task.

[DLIT] (7) 9 :
3) Create algorithms that demonstrate sequencing, selection or iteration.

Examples: Debit card transactions are approved until the account balance is insufficient to fund the transaction = iteration, do until.

[DLIT] (7) 10 :
4) Design a complex algorithm that contains sequencing, selection or iteration.

Examples: Lunch line algorithm that contains parameters for bringing your lunch and multiple options available in the lunch line.

[DLIT] (7) 13 :
7) Create a program that updates the value of a variable in the program.

Examples: Update the value of score when a coin is collected (in a flowchart, pseudocode or program).

[DLIT] (8) 9 :
3) Create an algorithm using a programming language that includes the use of sequencing, selections, or iterations.

Example: Use a block-based or script programming language
Step 1: Start
Step 2: Declare variables a, b and c.
Step 3: Read variables a, b and c.
Step 4: If a>b
      If a>c
         Display a is the largest number.
     Else
         Display c is the largest number.
   Else
      If b>c
         Display b is the largest number.
      Else
         Display c is the greatest number.
Step 5: Stop

[DLIT] (8) 13 :
7) Create a program that includes selection, iteration, or abstraction, and initializes, and updates, at least two variables.

Examples: Make a game, interactive card, story, or adventure game.

Subject: Digital Literacy and Computer Science (5 - 8)
Title: Fashion and Design
URL: https://csfirst.withgoogle.com/c/cs-first/en/fashion-and-design/overview.html
Description:

In Fashion & Design, students learn how computer science and technology are used in the fashion industry while building fashion-themed programs, like a fashion walk, a stylist tool, and a pattern maker. 

Fashion & Design is a complete theme designed to be completed over eight, 45-75 minute, sessions. For each Activity, students will watch a series of videos and create one coding project with opportunities to personalize their work using “Add-Ons”, which are mini-coding challenges that build on top of the core project.

This unit contains eight lessons which culminate in a unit project. Lessons can be completed individually if students have some experience with Scratch. 

Be sure to review the Materials tab for the lesson plan, starter guide, and more.

Users will need a Google account to use this resource.  



   View Standards     Standard(s): [DLIT] (3) 13 :
7) Test and debug a given program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

Examples: Sequencing cards for unplugged activities, online coding practice.

[DLIT] (4) 13 :
7) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

[DLIT] (4) 22 :
16) Gather and organize data to answer a question using a variety of computing and data visualization methods.

Examples: Sorting, totaling, averaging, charts, and graphs.

[DLIT] (4) 25 :
19) Use data from a simulation to answer a question collaboratively.

[DLIT] (5) 8 :
2) Create an algorithm to solve a problem while detecting and debugging logical errors within the algorithm.

Examples: Program the movement of a character, robot, or person through a maze.
Define a variable that can be changed or updated.

[DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

[DLIT] (5) 14 :
8) Demonstrate that programs require known starting values that may need to be updated appropriately during the execution of programs.

Examples: Set initial value of a variable, updating variables.

[DLIT] (5) 27 :
21) Manipulate data to answer a question using a variety of computing methods and tools to collect, organize, graph, analyze, and publish the resulting information.

[DLIT] (5) 32 :
26) Connect data from a simulation to real-life events.

[DLIT] (6) 11 :
5) Identify algorithms that make use of sequencing, selection or iteration.

Examples: Sequencing is doing steps in order (put on socks, put on shoes, tie laces); selection uses a Boolean condition to determine which of two parts of an algorithm are used (hair is dirty? True, wash hair; false, do not); iteration is the repetition of part of an algorithm until a condition is met (if you're happy and you know it clap your hands, when you're no longer happy you stop clapping).

[DLIT] (6) 14 :
8) Create a program that initializes a variable.

Example: Create a flowchart in which the variable or object returns to a starting position upon completion of a task.

[DLIT] (7) 12 :
6) Create and organize algorithms in order to automate a process efficiently.

Example: Set of recipes (algorithms) for preparing a complete meal.

[DLIT] (7) 13 :
7) Create a program that updates the value of a variable in the program.

Examples: Update the value of score when a coin is collected (in a flowchart, pseudocode or program).

Subject: Digital Literacy and Computer Science (3 - 7)
Title: Sports
URL: https://csfirst.withgoogle.com/c/cs-first/en/sports/overview.html
Description:

Students use computer science to simulate extreme sports, make their own fitness gadget commercial, and create commentary for a big sporting event.

Sports is a complete theme designed to be completed over eight, 45-75 minute, sessions. For each activity, students will watch a series of videos and create one coding project with opportunities to personalize their work using “Add-Ons,” which are mini-coding challenges that build on top of the core project.

Be sure to review the Materials tab for the lesson plan, starter guide, and more.

Users will need a Google account to use this resource.



   View Standards     Standard(s): [DLIT] (5) 8 :
2) Create an algorithm to solve a problem while detecting and debugging logical errors within the algorithm.

Examples: Program the movement of a character, robot, or person through a maze.
Define a variable that can be changed or updated.

[DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

[DLIT] (5) 14 :
8) Demonstrate that programs require known starting values that may need to be updated appropriately during the execution of programs.

Examples: Set initial value of a variable, updating variables.

[DLIT] (6) 7 :
1) Remove background details from an everyday process to highlight essential properties.

Examples: When making a sandwich, the type of bread, condiments, meats, and/or vegetables do not affect the fact that one is making a sandwich.

[DLIT] (6) 11 :
5) Identify algorithms that make use of sequencing, selection or iteration.

Examples: Sequencing is doing steps in order (put on socks, put on shoes, tie laces); selection uses a Boolean condition to determine which of two parts of an algorithm are used (hair is dirty? True, wash hair; false, do not); iteration is the repetition of part of an algorithm until a condition is met (if you're happy and you know it clap your hands, when you're no longer happy you stop clapping).

[DLIT] (6) 14 :
8) Create a program that initializes a variable.

Example: Create a flowchart in which the variable or object returns to a starting position upon completion of a task.

[DLIT] (7) 8 :
2) Create complex pseudocode using conditionals and Boolean statements.

Example: Automated vacuum pseudocode — drive forward until the unit encounters an obstacle; reverse 2"; rotate 30 degrees to the left, repeat.

[DLIT] (7) 13 :
7) Create a program that updates the value of a variable in the program.

Examples: Update the value of score when a coin is collected (in a flowchart, pseudocode or program).

[DLIT] (8) 13 :
7) Create a program that includes selection, iteration, or abstraction, and initializes, and updates, at least two variables.

Examples: Make a game, interactive card, story, or adventure game.

Subject: Digital Literacy and Computer Science (5 - 8)
Title: Create Your Own Google Logo
URL: https://csfirst.withgoogle.com/c/cs-first/en/create-your-own-google-logo/overview.html
Description:

In each of the “Create your own Google logo” activities, students code and design their own versions of the Google logo. These activities introduce students to computer science and the programming language Scratch. These activities are most appropriate for students ages 9-14 and take 15-60 minutes to run.

Be sure to review the Materials tab for the lesson plan, starter guide, and more. 

Users will need a Google account to use this resource. 



   View Standards     Standard(s): [DLIT] (3) 8 :
2) Analyze a given list of sub-problems while addressing a larger problem.

Example: Problem - making a peanut butter sandwich; sub-problem - opening jar, finding a knife, getting the bread.
Problem - design and share a brochure; sub-problem - selecting font, choosing layout.

[DLIT] (3) 13 :
7) Test and debug a given program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

Examples: Sequencing cards for unplugged activities, online coding practice.

[DLIT] (4) 8 :
2) Formulate a list of sub-problems to consider while addressing a larger problem.

Examples: Problem - a multi-step math problem; sub-problem - steps to solve.
Problem - light bulb does not light; sub-problem - steps to resolve why.

[DLIT] (4) 9 :
3) Show that different solutions exist for the same problem or sub-problem.

[DLIT] (4) 10 :
4) Detect and debug logical errors in various basic algorithms.

Example: Trace the path of a set of directions to determine success or failure.

[DLIT] (4) 13 :
7) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

[DLIT] (5) 8 :
2) Create an algorithm to solve a problem while detecting and debugging logical errors within the algorithm.

Examples: Program the movement of a character, robot, or person through a maze.
Define a variable that can be changed or updated.

[DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

[DLIT] (5) 14 :
8) Demonstrate that programs require known starting values that may need to be updated appropriately during the execution of programs.

Examples: Set initial value of a variable, updating variables.

[DLIT] (6) 7 :
1) Remove background details from an everyday process to highlight essential properties.

Examples: When making a sandwich, the type of bread, condiments, meats, and/or vegetables do not affect the fact that one is making a sandwich.

[DLIT] (6) 14 :
8) Create a program that initializes a variable.

Example: Create a flowchart in which the variable or object returns to a starting position upon completion of a task.

[DLIT] (7) 12 :
6) Create and organize algorithms in order to automate a process efficiently.

Example: Set of recipes (algorithms) for preparing a complete meal.

[DLIT] (7) 13 :
7) Create a program that updates the value of a variable in the program.

Examples: Update the value of score when a coin is collected (in a flowchart, pseudocode or program).

[DLIT] (7) 14 :
8) Formulate a narrative for each step of a process and its intended result, given pseudocode or code.

[DLIT] (8) 9 :
3) Create an algorithm using a programming language that includes the use of sequencing, selections, or iterations.

Example: Use a block-based or script programming language
Step 1: Start
Step 2: Declare variables a, b and c.
Step 3: Read variables a, b and c.
Step 4: If a>b
      If a>c
         Display a is the largest number.
     Else
         Display c is the largest number.
   Else
      If b>c
         Display b is the largest number.
      Else
         Display c is the greatest number.
Step 5: Stop

[DLIT] (8) 13 :
7) Create a program that includes selection, iteration, or abstraction, and initializes, and updates, at least two variables.

Examples: Make a game, interactive card, story, or adventure game.

[DLIT] (8) 29 :
23) Design a digital artifact to propose a solution for a content-related problem.

Example: Create a presentation outlining how to create a cost-efficient method to melt snow on roads during the winter.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (3 - 8)
Title: Art
URL: https://csfirst.withgoogle.com/c/cs-first/en/art/overview.html
Description:

In Art, students create animations, interactive artwork, photograph filters, and other exciting, artistic projects.

Art is a complete theme designed to be completed over eight, 45-75 minute, sessions. For each Activity, students will watch a series of videos and create one coding project with opportunities to personalize their work using “Add-Ons”, which are mini-coding challenges that build on top of the core project.

Be sure to review the Materials tab for the lesson plan, starter guide, and more.

Users will need a Google account to use this resource.  



   View Standards     Standard(s): [DLIT] (3) 13 :
7) Test and debug a given program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

Examples: Sequencing cards for unplugged activities, online coding practice.

[DLIT] (4) 13 :
7) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

[DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

[ELA2021] (3) 33 :
33. Write personal or fictional narratives with a logical plot (sequence of events), characters, transitions, and a sense of closure.
[ELA2021] (4) 35 :
35. Write personal or fictional narratives using a logical plot, transitional words and phrases, sensory details, and dialogue, and providing a sense of closure.
[ELA2021] (5) 34 :
34. Write personal or fictional narratives incorporating literary elements (characters, plot, setting, conflict), dialogue, strong voice, and clear event sequences.
Subject: Digital Literacy and Computer Science (3 - 5), English Language Arts (3 - 5)
Title: An Unusual Discovery
URL: https://csfirst.withgoogle.com/c/cs-first/en/an-unusual-discovery/an-unusual-discovery/an-unusual-discovery.html
Description:

An Unusual Discovery is designed to be completed within 45-75 minutes. Students watch a series of videos to create a coding project. Students personalize their project using mini-coding challenges called "add-ons.”

In this activity, students will sequence dialogue to tell a story. They animate interactions between characters, their backdrops, and a surprising object. This activity introduces students to computer science and the programming language Scratch. Students will use different Scratch blocks to create their own unique stories.

By selecting add-on videos that present coding challenges, students will:
- Use event blocks (like “when flag clicked”) to trigger a series of code.
- Sequence at least 3 “say” blocks between two sprites (characters) to construct a dialogue.
- Program a conditional so that the computer can make a decision based on user response.
- Produce repeated movements by applying control blocks to their program.

The teacher's resource can be accessed here and a lesson plan is available here



   View Standards     Standard(s): [DLIT] (3) 13 :
7) Test and debug a given program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

Examples: Sequencing cards for unplugged activities, online coding practice.

[DLIT] (4) 13 :
7) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

[DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

Subject: Digital Literacy and Computer Science (3 - 5)
Title: High Seas Activity
URL: https://csfirst.withgoogle.com/c/cs-first/en/high-seas-activity/overview.html
Description:

In this activity, students use code to animate an ocean wave and tell a story that takes place on the high seas. This activity introduces students to computer science and the programming language Scratch. Students will use different Scratch blocks to create their own unique stories. 

Adventure on the High Seas is a sample activity designed to be completed within 45-75 minutes. Students will watch a series of videos and create one coding project with opportunities to personalize their work using “Add-Ons,” which are mini-coding challenges that build on top of the core project.

Be sure to review the Materials tab for the lesson plan, starter guide, and more. 

Users will need a Google account to use this resource. 



   View Standards     Standard(s): [DLIT] (3) 13 :
7) Test and debug a given program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

Examples: Sequencing cards for unplugged activities, online coding practice.

[DLIT] (4) 13 :
7) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

[DLIT] (5) 8 :
2) Create an algorithm to solve a problem while detecting and debugging logical errors within the algorithm.

Examples: Program the movement of a character, robot, or person through a maze.
Define a variable that can be changed or updated.

[DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

[DLIT] (5) 14 :
8) Demonstrate that programs require known starting values that may need to be updated appropriately during the execution of programs.

Examples: Set initial value of a variable, updating variables.

[DLIT] (6) 14 :
8) Create a program that initializes a variable.

Example: Create a flowchart in which the variable or object returns to a starting position upon completion of a task.

Subject: Digital Literacy and Computer Science (3 - 6)
Title: Gumball's Coding Adventure
URL: https://csfirst.withgoogle.com/c/cs-first/en/gumballs-coding-adventure/overview.html
Description:

This sample activity is a collaboration between Cartoon Network and CS First. Students will tell a story using the characters from “The Amazing World of Gumball". This activity introduces students to computer science and the programming language Scratch. Students will use different Scratch blocks to create their own unique stories.

Gumball’s Coding Adventure is a simple activity designed to be completed within 45-75 minutes. Students will watch a series of videos and create one coding project with opportunities to personalize their work using “Add-Ons”, which are mini-coding challenges that build on top of the core project.

Be sure to review the Materials tab for the lesson plan, starter guide, and more. 

Users will need a Google account to use this resource. 



   View Standards     Standard(s): [DLIT] (3) 13 :
7) Test and debug a given program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

Examples: Sequencing cards for unplugged activities, online coding practice.

[DLIT] (4) 13 :
7) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

[DLIT] (4) 22 :
16) Gather and organize data to answer a question using a variety of computing and data visualization methods.

Examples: Sorting, totaling, averaging, charts, and graphs.

[DLIT] (4) 25 :
19) Use data from a simulation to answer a question collaboratively.

[DLIT] (5) 8 :
2) Create an algorithm to solve a problem while detecting and debugging logical errors within the algorithm.

Examples: Program the movement of a character, robot, or person through a maze.
Define a variable that can be changed or updated.

[DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

[DLIT] (5) 14 :
8) Demonstrate that programs require known starting values that may need to be updated appropriately during the execution of programs.

Examples: Set initial value of a variable, updating variables.

[DLIT] (5) 27 :
21) Manipulate data to answer a question using a variety of computing methods and tools to collect, organize, graph, analyze, and publish the resulting information.

[DLIT] (6) 11 :
5) Identify algorithms that make use of sequencing, selection or iteration.

Examples: Sequencing is doing steps in order (put on socks, put on shoes, tie laces); selection uses a Boolean condition to determine which of two parts of an algorithm are used (hair is dirty? True, wash hair; false, do not); iteration is the repetition of part of an algorithm until a condition is met (if you're happy and you know it clap your hands, when you're no longer happy you stop clapping).

[DLIT] (6) 14 :
8) Create a program that initializes a variable.

Example: Create a flowchart in which the variable or object returns to a starting position upon completion of a task.

[DLIT] (7) 12 :
6) Create and organize algorithms in order to automate a process efficiently.

Example: Set of recipes (algorithms) for preparing a complete meal.

[DLIT] (7) 13 :
7) Create a program that updates the value of a variable in the program.

Examples: Update the value of score when a coin is collected (in a flowchart, pseudocode or program).

[DLIT] (8) 9 :
3) Create an algorithm using a programming language that includes the use of sequencing, selections, or iterations.

Example: Use a block-based or script programming language
Step 1: Start
Step 2: Declare variables a, b and c.
Step 3: Read variables a, b and c.
Step 4: If a>b
      If a>c
         Display a is the largest number.
     Else
         Display c is the largest number.
   Else
      If b>c
         Display b is the largest number.
      Else
         Display c is the greatest number.
Step 5: Stop

[DLIT] (8) 11 :
5) Discuss the efficiency of an algorithm or technology used to solve complex problems.

[DLIT] (8) 13 :
7) Create a program that includes selection, iteration, or abstraction, and initializes, and updates, at least two variables.

Examples: Make a game, interactive card, story, or adventure game.

Subject: Digital Literacy and Computer Science (3 - 8)
Title: Music & Sound
URL: https://csfirst.withgoogle.com/c/cs-first/en/music-and-sound/overview.html
Description:

In Music & Sound, students use the computer to play musical notes, create a music video, and build an interactive music display while learning how programming is used to create music.

Music is a complete theme designed to be completed over eight, 45-75 minute, sessions. For each activity, students will watch a series of videos and create one coding project with opportunities to personalize their work using “Add-Ons,” which are mini-coding challenges that build on top of the core project.

Be sure to review the Materials tab for the lesson plan, starter guide, and more.

Users will need a Google account to use this resource.



   View Standards     Standard(s): [DLIT] (4) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (4) 8 :
2) Formulate a list of sub-problems to consider while addressing a larger problem.

Examples: Problem - a multi-step math problem; sub-problem - steps to solve.
Problem - light bulb does not light; sub-problem - steps to resolve why.

[DLIT] (4) 10 :
4) Detect and debug logical errors in various basic algorithms.

Example: Trace the path of a set of directions to determine success or failure.

[DLIT] (4) 13 :
7) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

[DLIT] (4) 27 :
21) Develop, test, and refine prototypes as part of a cyclical design process to solve a simple problem.

[DLIT] (5) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (5) 8 :
2) Create an algorithm to solve a problem while detecting and debugging logical errors within the algorithm.

Examples: Program the movement of a character, robot, or person through a maze.
Define a variable that can be changed or updated.

[DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

[DLIT] (5) 14 :
8) Demonstrate that programs require known starting values that may need to be updated appropriately during the execution of programs.

Examples: Set initial value of a variable, updating variables.

[DLIT] (5) 34 :
28) Develop, test, and refine prototypes as part of a cyclical design process to solve a complex problem.

Examples: Design backpack for a specific user's needs; design a method to collect and transport water without the benefit of faucets; design boats that need to hold as much payload as possible before sinking; design models of chairs based on specific user needs.

[DLIT] (6) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (6) 14 :
8) Create a program that initializes a variable.

Example: Create a flowchart in which the variable or object returns to a starting position upon completion of a task.

[DLIT] (7) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (7) 13 :
7) Create a program that updates the value of a variable in the program.

Examples: Update the value of score when a coin is collected (in a flowchart, pseudocode or program).

[DLIT] (7) 14 :
8) Formulate a narrative for each step of a process and its intended result, given pseudocode or code.

[DLIT] (8) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (8) 7 :
1) Design a function using a programming language that demonstrates abstraction.

Example: Create a program that utilizes functions in an effort remove repetitive sequences of steps.

[DLIT] (8) 9 :
3) Create an algorithm using a programming language that includes the use of sequencing, selections, or iterations.

Example: Use a block-based or script programming language
Step 1: Start
Step 2: Declare variables a, b and c.
Step 3: Read variables a, b and c.
Step 4: If a>b
      If a>c
         Display a is the largest number.
     Else
         Display c is the largest number.
   Else
      If b>c
         Display b is the largest number.
      Else
         Display c is the greatest number.
Step 5: Stop

[DLIT] (8) 13 :
7) Create a program that includes selection, iteration, or abstraction, and initializes, and updates, at least two variables.

Examples: Make a game, interactive card, story, or adventure game.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (4 - 8)
Title: Game Design
URL: https://csfirst.withgoogle.com/c/cs-first/en/game-design/overview.html
Description:

In Game Design, students learn basic video game coding concepts by making different types of games, including racing, platform, launching, and more! 

Game Design is a complete theme designed to be completed over eight, 45-75 minute, sessions. For each activity, students will watch a series of videos and create one coding project with opportunities to personalize their work using “Add-Ons”, which are mini-coding challenges that build on top of the core project.

Be sure to review the Materials tab for the lesson plan, starter guide, and more.

Users will need a Google account to use this resource. 



   View Standards     Standard(s): [DLIT] (5) 8 :
2) Create an algorithm to solve a problem while detecting and debugging logical errors within the algorithm.

Examples: Program the movement of a character, robot, or person through a maze.
Define a variable that can be changed or updated.

[DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

Subject: Digital Literacy and Computer Science (5)
Title: Computer Science Fundamentals Unit 7 Course F Lesson 2: Coding With Comments (2018)
URL: https://curriculum.code.org/csf-18/coursef/2/
Description:

In this set of puzzles, students will begin with an introduction (or review depending on the experience of your class) of Code.org's online workspace. There will be videos pointing out the basic functionality of the workspace including the RunReset, and Step buttons. Also discussed in these videos: dragging Blockly blocks, deleting Blockly blocks, and connecting Blockly blocks. Next, students will practice their sequencing and debugging skills in a maze.

We recognize that every classroom has a spectrum of understanding for every subject. Some students in your class may be computer wizards, while others haven't had much experience at all. In order to create an equal playing (and learning) field, we have developed these ramp-up lessons. This can be used as either an introduction or a review of how to use Code.org and basic computer science concepts.

Students will be able to:
- order movement commands as sequential steps in a program.
- modify an existing program to solve errors.
- break down a long sequence of instructions into the largest repeatable sequence.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

[DLIT] (5) 34 :
28) Develop, test, and refine prototypes as part of a cyclical design process to solve a complex problem.

Examples: Design backpack for a specific user's needs; design a method to collect and transport water without the benefit of faucets; design boats that need to hold as much payload as possible before sinking; design models of chairs based on specific user needs.

Subject: Digital Literacy and Computer Science (5)
Title: Computer Science Fundamentals Unit 7 Course F Lesson 7: Drawing Shapes With Loops (2018)
URL: https://curriculum.code.org/csf-18/coursef/7/
Description:

Watch student faces light up as they make their own gorgeous designs using a small number of blocks and digital stickers! This lesson builds on the understanding of loops from previous lessons and gives students a chance to be truly creative. This activity is fantastic for producing artifacts for portfolios or parent/teacher conferences.

This series highlights the power of loops with creative and personal designs. Offered as a project-backed sequence, this progression will allow students to build on top of their own work and create amazing artifacts.

Students will be able to:
- identify the benefits of using a loop structure instead of manual repetition.
- differentiate between commands that need to be repeated in loops and commands that should be used on their own.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

[DLIT] (5) 34 :
28) Develop, test, and refine prototypes as part of a cyclical design process to solve a complex problem.

Examples: Design backpack for a specific user's needs; design a method to collect and transport water without the benefit of faucets; design boats that need to hold as much payload as possible before sinking; design models of chairs based on specific user needs.

Subject: Digital Literacy and Computer Science (5)
Title: Computer Science Fundamentals Unit 7 Course F Lesson 8: Nested Loops in Maze (2018)
URL: https://curriculum.code.org/csf-18/coursef/8/
Description:

In this online activity, students will have the opportunity to push their understanding of loops to a whole new level. Playing with the Bee and Plants vs. Zombies, students will learn how to program a loop to be inside of another loop. They will also be encouraged to figure out how little changes in either loop will affect their program when they click Run.

In this introduction to nested loops, students will go outside of their comfort zone to create more efficient solutions to puzzles. In earlier puzzles, loops pushed students to recognize repetition. Here, students will learn to recognize patterns within repeated patterns to develop these nested loops. This stage starts off by encouraging students to try to solve a puzzle where the code is irritating and complex to write out the long way. After a video introduces nested loops, students are shown an example and asked to predict what will happen when a loop is put inside of another loop. This progression leads to plenty of practice for students to solidify and build on their understanding of looping in programming.

Students will be able to:
- break complex tasks into smaller repeatable sections.
- recognize large repeated patterns as made from smaller repeated patterns.
- identify the benefits of using a loop structure instead of manual repetition.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

[DLIT] (5) 34 :
28) Develop, test, and refine prototypes as part of a cyclical design process to solve a complex problem.

Examples: Design backpack for a specific user's needs; design a method to collect and transport water without the benefit of faucets; design boats that need to hold as much payload as possible before sinking; design models of chairs based on specific user needs.

Subject: Digital Literacy and Computer Science (5)
Title: Computer Science Fundamentals Unit 7 Course F Lesson 9: Nested Loops With Frozen (2018)
URL: https://curriculum.code.org/csf-18/coursef/9/
Description:

Now that students know how to layer their loops, they can create so many beautiful things. This lesson will take students through a series of exercises to help them create their own portfolio-ready images using Anna and Elsa's excellent ice-skating skills!

In this series, students will get practice nesting loops while creating images that they will be excited to share. Beginning with a handful of instructions, students will make their own decisions when it comes to creating designs for repetition. They will then spin those around a variety of ways to end up with a work of art that is truly unique.

Students will be able to:
- describe when a loop, nested loop, or no loop is needed.
- recognize the difference between using a loop and a nested loop.
- break apart code into the largest repeatable sequences using both loops and nested loops.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (5) 8 :
2) Create an algorithm to solve a problem while detecting and debugging logical errors within the algorithm.

Examples: Program the movement of a character, robot, or person through a maze.
Define a variable that can be changed or updated.

[DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

Subject: Digital Literacy and Computer Science (5)
Title: Computer Science Fundamentals Unit 7 Course F Lesson 10: Conditionals With Cards (2018)
URL: https://curriculum.code.org/csf-18/coursef/10/
Description:

This lesson demonstrates how conditionals can be used to tailor a program to specific information. We don’t always have all of the information we need when writing a program. Sometimes you will want to do something different in one situation than in another, even if you don't know what situation will be true when your code runs. That is where conditionals come in. Conditionals allow a computer to make a decision, based on the information that is true any time your code is run.

One of the best parts of teaching conditionals is that students already understand the concept from their everyday lives. This lesson merges computer science into the real world by building off of their ability to tell if a condition is true or false. Students will learn to use if statements to declare when a certain command should be run, as well as if / else statements to declare when a command should be run and what do run otherwise. Students may not recognize the word conditionals, but most students will understand the idea of using "if" to make sure that some action only occurs when it is supposed to.

Students will be able to:
- define circumstances when certain parts of a program should run and when they shouldn't.
- determine whether a conditional is met based on criteria.
- traverse a program and predict the outcome, given a set of input.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (5) 8 :
2) Create an algorithm to solve a problem while detecting and debugging logical errors within the algorithm.

Examples: Program the movement of a character, robot, or person through a maze.
Define a variable that can be changed or updated.

[DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

Subject: Digital Literacy and Computer Science (5)
Title: Computer Science Fundamentals Unit 7 Course F Lesson 11: Conditionals With the Farmer (2018)
URL: https://curriculum.code.org/csf-18/coursef/11/
Description:

This lesson introduces students to while loops, until loops, and if / else statements. While loops are loops that continue to repeat commands as long as a condition is true. While loops are used when the programmer doesn't know the exact number of times the commands need to be repeated, but the programmer does know what condition needs to be true in order for the loop to continue looping. Until loops keep going until something specific is true. If / Else statements offer flexibility in programming by running entire sections of code only if something is true, otherwise, it runs something else.

A basic understanding of conditionals is a recommended prerequisite for Course E. We created this introduction to give a review for the students already familiar to conditionals and allow practice for the students that are just learning. If you find that the understanding of conditionals varies widely in your classroom, we recommend a strategic pairing of students when completing this online lesson.

Students will be able to:
- define circumstances when certain parts of a program should run and when they shouldn't.
- determine whether a conditional is met based on criteria.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (5) 8 :
2) Create an algorithm to solve a problem while detecting and debugging logical errors within the algorithm.

Examples: Program the movement of a character, robot, or person through a maze.
Define a variable that can be changed or updated.

[DLIT] (5) 9 :
3) Create an algorithm that is defined by simple pseudocode.

[DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

Subject: Digital Literacy and Computer Science (5)
Title: Computer Science Fundamentals Unit 7 Course F Lesson 12: Functions With Minecraft (2018)
URL: https://curriculum.code.org/csf-18/coursef/12/
Description:

Students will begin to understand how functions can be helpful in this fun and interactive Minecraft adventure!

Students will discover the versatility of programming by practicing functions in different environments. Students will recognize reusable patterns and be able to incorporate named blocks to call pre-defined functions.

Students will be able to:
- use functions to simplify complex programs.
- use pre-determined functions to complete commonly repeated tasks.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

[DLIT] (5) 13 :
7) Identify variables.

[DLIT] (5) 14 :
8) Demonstrate that programs require known starting values that may need to be updated appropriately during the execution of programs.

Examples: Set initial value of a variable, updating variables.

Subject: Digital Literacy and Computer Science (5)
Title: Computer Science Fundamentals Unit 7 Course F Lesson 15: Variables With Artist (2018)
URL: https://curriculum.code.org/csf-18/coursef/15/
Description:

In this lesson, students will explore the creation of repetitive designs using variables in the Artist environment. Students will learn how variables can be used to make code easier to write and easier to read, even when the values don't change at runtime. This stage teaches the most basic use for variables, as a constant that reoccurs frequently in a program. 

Students will be able to:
- assign values to existing variables.
- utilize variables in place of repetitive values inside of a program.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

[DLIT] (5) 13 :
7) Identify variables.

[DLIT] (5) 14 :
8) Demonstrate that programs require known starting values that may need to be updated appropriately during the execution of programs.

Examples: Set initial value of a variable, updating variables.

Subject: Digital Literacy and Computer Science (5)
Title: Computer Science Fundamentals Unit 7 Course F Lesson 16: Changing Variables With Bee (2018)
URL: https://curriculum.code.org/csf-18/coursef/16/
Description:

This lesson will help illustrate how variables can make programs more powerful by allowing values to change while the code is running. You don't always know what a value is going to be before you begin your program. Sometimes, values change while your code is running. This lesson will illustrate how code with changing values can be helpful.

Students will be able to:
- identify areas where they can use variables to modify quantities during runtime.
- examine code to find places where variables can be substituted for specific values.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

[DLIT] (5) 13 :
7) Identify variables.

[DLIT] (5) 14 :
8) Demonstrate that programs require known starting values that may need to be updated appropriately during the execution of programs.

Examples: Set initial value of a variable, updating variables.

Subject: Digital Literacy and Computer Science (5)
Title: Computer Science Fundamentals Unit 7 Course F Lesson 17: Changing Variables With Artist (2018)
URL: https://curriculum.code.org/csf-18/coursef/17/
Description:

In this lesson, students will explore the creation of repetitive designs using variables in the Artist environment. Students will learn how variables can be used to make code easier to write and easier to read. After guided puzzles, students will end on a free play level to show what they have learned and create their own designs.

Variables are essentially placeholders for values that might be unknown at the time that you run your program or for values that can change during the execution of a program. These are vital to creating dynamic code because they allow your program to change and grow based on any number of potential modifications. This stage reinforces the use of variables, using the most basic capabilities of setting and using them.

Students will be able to:
- assign values to existing variables.
- utilize variables in place of repetitive values inside of a program.
- use variables to change values inside of a loop.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

[DLIT] (5) 13 :
7) Identify variables.

[DLIT] (5) 14 :
8) Demonstrate that programs require known starting values that may need to be updated appropriately during the execution of programs.

Examples: Set initial value of a variable, updating variables.

Subject: Digital Literacy and Computer Science (5)
Title: Computer Science Fundamentals Unit 7 Course F Lesson 18: For Loop Fun (2018)
URL: https://curriculum.code.org/csf-18/coursef/18/
Description:

We know that loops allow us to do things over and over again, but now we’re going to learn how to use loops that have extra structures built right in. These new structures will allow students to create code that is more powerful and dynamic.

At this point, students have become masters of loops. Today, they will learn about another loop commonly used in programming. The for loop repeats commands a certain number of times but also keeps track of the values it is iterating over. For example, a for loop that begins at 4, ends with 8, and has a step value of 1 will repeat 4 times, but the values 4, 5, 6, and 7 will also be captured for use elsewhere. Using this structure with variables can create some pretty fantastic programs. Today, students will simply be learning the basics of a for loop before diving into programming with them next time!

Students will be able to:
- determine starting value, stopping value, and stepping value for a `for` loop.
- illustrate the counter values hit each time through a for loop during runtime.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

[DLIT] (5) 13 :
7) Identify variables.

[DLIT] (5) 14 :
8) Demonstrate that programs require known starting values that may need to be updated appropriately during the execution of programs.

Examples: Set initial value of a variable, updating variables.

Subject: Digital Literacy and Computer Science (5)
Title: Computer Science Fundamentals Unit 7 Course F Lesson 19: For Loops With Bee (2018)
URL: https://curriculum.code.org/csf-18/coursef/19/
Description:

Featuring Bee, this lesson focuses on for loops and using an incrementing variable to solve more complicated puzzles. Students will begin by reviewing loops from previous lessons, then they'll walk through an introduction to for loops so they can more effectively solve complicated problems.

Today's concept, for loops, are a very important topic in computer science. Not only are they widely used, but the process of learning for loops enhances the learning of other important concepts (such as variables and parameters). Students will have plenty of practice critically thinking through problems by determining the starting, ending, and stepping values for each for loop. This concept uses plenty of math as well, so feel free to pair it with a math lesson for an even deeper learning experience.

Students will be able to:
- determine starting value, stopping value, and stepping value for a `for` loop.
- recognize when to use a `for` loop and when to use other loops such as `repeat` and `while` loops.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

[DLIT] (5) 13 :
7) Identify variables.

[DLIT] (5) 14 :
8) Demonstrate that programs require known starting values that may need to be updated appropriately during the execution of programs.

Examples: Set initial value of a variable, updating variables.

Subject: Digital Literacy and Computer Science (5)
Title: Computer Science Fundamentals Unit 7 Course F Lesson 20: For Loops With Artist (2018)
URL: https://curriculum.code.org/csf-18/coursef/20/
Description:

In this lesson, students continue to practice for loops, but this time with Artist. Students will complete puzzles combining the ideas of variables, loops, and for loops to create complex designs. At the end, they will have a chance to create their own art in a free play level.

Creativity and critical thinking come together beautifully in this lesson. Students will continue their practice with for loops and variables while they create jaw-dropping images. This lesson inspires a creative mind while teaching core concepts to computer science.

Students will be able to:
- use `for` loops to change loop several times with different values.
- recognize when to use a `for` loop and when to use other loops such as `repeat` and `while` loops.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (5) 8 :
2) Create an algorithm to solve a problem while detecting and debugging logical errors within the algorithm.

Examples: Program the movement of a character, robot, or person through a maze.
Define a variable that can be changed or updated.

[DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

[DLIT] (5) 34 :
28) Develop, test, and refine prototypes as part of a cyclical design process to solve a complex problem.

Examples: Design backpack for a specific user's needs; design a method to collect and transport water without the benefit of faucets; design boats that need to hold as much payload as possible before sinking; design models of chairs based on specific user needs.

Subject: Digital Literacy and Computer Science (5)
Title: Computer Science Fundamentals Unit 7 Course F Lesson 22: Alien Dance Party (2018)
URL: https://curriculum.code.org/csf-18/coursef/22/
Description:

This lesson features Sprite Lab, a platform where students can create their own alien dance party with interactions between characters and user input. Students will work with events to create game controls.

Students will use events to make characters move around the screen, make noises, and change backgrounds based on user input. This lesson offers a great introduction to events in programming and even gives a chance to show creativity! At the end of the puzzle sequence, students will be presented with the opportunity to share their projects.

Students will be able to:
- identify actions that correlate to input events.
- create an animated, interactive game using sequence and events.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

[DLIT] (5) 34 :
28) Develop, test, and refine prototypes as part of a cyclical design process to solve a complex problem.

Examples: Design backpack for a specific user's needs; design a method to collect and transport water without the benefit of faucets; design boats that need to hold as much payload as possible before sinking; design models of chairs based on specific user needs.

Subject: Digital Literacy and Computer Science (5)
Title: Computer Science Fundamentals Unit 7 Course F Lesson 23: Pet Giraffe (2018)
URL: https://curriculum.code.org/csf-18/coursef/23/
Description:

Here, students will use Sprite Lab to play with sprites and their properties. Students will use events, behaviors, and custom code to create their very own pet giraffe that gets hungry, playful, and even filthy!

Students will use events to make characters move around the screen, change size, and change colors based on user input. This lesson offers a great introduction to events in programming and even gives a chance to show creativity!

Students will be able to:
- identify actions that correlate to input events.
- create an animated, interactive game using sequence and events.

Note: You will need to create a free account on code.org before you can view this resource.



ALEX Classroom Resources: 28

Go To Top of page