ALEX Classroom Resources

ALEX Classroom Resources  
   View Standards     Standard(s): [DLIT] (6) 5 :
R5) Locate and curate information from digital sources to answer research questions.

[DLIT] (6) 22 :
16) Communicate and/or publish collaboratively to inform others from a variety of backgrounds and cultures about issues and problems.

[DLIT] (6) 25 :
19) Track data change from a variety of sources.

Example: Use editing or versioning tools to track changes to data.

[DLIT] (6) 29 :
23) Discuss how digital devices may be used to collect, analyze, and present information.

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 5 :
R5) Locate and curate information from digital sources to answer research questions.

[DLIT] (7) 29 :
23) Demonstrate the use of a variety of digital devices individually and collaboratively to collect, analyze, and present information for content-related problems.

[DLIT] (7) 33 :
27) Identify data needed to create a model or simulation of a given event.

Examples: When creating a random name generator, the program needs access to a list of possible names.

[DLIT] (8) 5 :
R5) Locate and curate information from digital sources to answer research questions.

[DLIT] (8) 23 :
17) Communicate and publish individually or collaboratively to persuade peers, experts, or community about issues and problems.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Visual Learning
URL: https://www.remc.org/21Things4Students/21/2-visual-learning/
Description:

As part of this activity, you will be learning how to create visual organizers and how to create and use QR codes in learning.


LEARNING OBJECTIVES

When you have completed this Thing you will:

  1. Know how to set a personal learning goal and reflect on my progress [Empowered Learner]

  2. Be able to organize and manage information [Knowledge Constructor]

  3. Understand how to use a scientific design process to collect and analyze information [Innovative Designer]

  4. Be able to express myself and share my ideas and work digitally [Creative Communicator]

  5. Be able to collaborate with a group to create an original design [Creative Communicator, Innovative Designer]



   View Standards     Standard(s): [DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 29 :
23) Design a digital artifact to propose a solution for a content-related problem.

Example: Create a presentation outlining how to create a cost-efficient method to melt snow on roads during the winter.

[DLIT] (8) 31 :
25) Create a model that represents a system.

Example: Food chain, supply and demand.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Design Thinking
URL: https://www.remc.org/21Things4Students/21/15-design-thinking/
Description:

Design Thinking is a process for designing something to solve a problem. It shares a lot of similarities to the Engineering Design Process you might learn in a STEM class and the Scientific Method you learn in science. However, it tends to work really well with creating solutions to problems that impact humans, also known as Human-Centered Design

In this activity, you’ll work with a team to identify a problem, come up with ideas to solve it, make a prototype of your best idea, test it out and ultimately share it. Your goal is to make a positive impact on the problem you choose.


LEARNING OBJECTIVES

When you have completed this activity you will:

  1. be able to use research skills to understand real-world problems and develop ideas to solve them [Innovative Designer, Knowledge Constructor]

  2. know how to use a design process to solve a problem [Innovative Designer]

  3. be able to create and test prototypes to improve on a design [Innovative Designer]

  4. be able to choose appropriate tools to organize and manage a process with team members [Innovative Designer, Global Collaborator]

  5. be able to choose appropriate tools to share my ideas with a target audience [Innovative Designer, Creative Communicator]

  6. understand Tinkercad design software basics [Empowered Learner]

  7. know how to use Tinkercad software to design their own invention that solves a problem or changes how we interact with the world [Innovative Designer]

  8. know that technology is something that solves a problem or changes how we interact with the world [Knowledge Constructor]



   View Standards     Standard(s): [DLIT] (6) 7 :
1) Remove background details from an everyday process to highlight essential properties.

Examples: When making a sandwich, the type of bread, condiments, meats, and/or vegetables do not affect the fact that one is making a sandwich.

[DLIT] (6) 12 :
6) Identify steps in developing solutions to complex problems using computational thinking.

[DLIT] (6) 13 :
7) Describe how automation works to increase efficiency.

Example: Compare the amount of time/work to hand wash a car vs. using an automated car wash.

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 11 :
5) Solve a complex problem using computational thinking.

[DLIT] (7) 12 :
6) Create and organize algorithms in order to automate a process efficiently.

Example: Set of recipes (algorithms) for preparing a complete meal.

[DLIT] (7) 14 :
8) Formulate a narrative for each step of a process and its intended result, given pseudocode or code.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 8 :
2) Explain how abstraction is used in a given function.

Example: Examine a set of block-based code and explain how abstraction was used.

[DLIT] (8) 11 :
5) Discuss the efficiency of an algorithm or technology used to solve complex problems.

[DLIT] (8) 12 :
6) Describe how algorithmic processes and automation increase efficiency.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computational Thinking
URL: https://www.remc.org/21Things4Students/21/21-computational-thinking/
Description:

Have you ever had a complex problem that you needed to solve? This could be a math problem, science experiment, an essay you need to write, and coding and game design. It could even be as simple as planning the best route to school or baking your favorite cookies!

Computational thinking can be used to take a complex problem, understand what the problem is and develop possible solutions to solve or explain it.

Students will complete Quests to learn about the four stages of computational thinking:


LEARNING OBJECTIVES:

When you have completed this activity you will:

  1. understand computational thinking [Computational Thinker]
  2. be able to solve complex problems using computational thinking. [Computational Thinker]
  3. be able to break down a problem into smaller more manageable parts. [Computational Thinker]
  4. know how to look for patterns and sequences. [Computational Thinker]
  5. be able to focus on important information only. [Computational Thinker]
  6. be able to develop a step-by-step solution to the problem. [Computational Thinker]
  7. know how to use coding to automate a task [Computational Thinker]
  8. understand computational design by applying technology to a problem [Innovative Designer]
  9. understand programming as you complete hands-on activities, solving problems encountered [Computational Thinker]
  10. understand the coding your program creates [Empowered Learner]


   View Standards     Standard(s): [DLIT] (6) 29 :
23) Discuss how digital devices may be used to collect, analyze, and present information.

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 33 :
27) Identify data needed to create a model or simulation of a given event.

Examples: When creating a random name generator, the program needs access to a list of possible names.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 6 Chapter 1 Lesson 8: The Program Design Process (18-19)
URL: https://studio.code.org/s/csd6-2018/stage/8/puzzle/1
Description:

Students will use the design circuit boards and create an app of their own design.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (6) 11 :
5) Identify algorithms that make use of sequencing, selection or iteration.

Examples: Sequencing is doing steps in order (put on socks, put on shoes, tie laces); selection uses a Boolean condition to determine which of two parts of an algorithm are used (hair is dirty? True, wash hair; false, do not); iteration is the repetition of part of an algorithm until a condition is met (if you're happy and you know it clap your hands, when you're no longer happy you stop clapping).

[DLIT] (6) 12 :
6) Identify steps in developing solutions to complex problems using computational thinking.

[DLIT] (6) 14 :
8) Create a program that initializes a variable.

Example: Create a flowchart in which the variable or object returns to a starting position upon completion of a task.

[DLIT] (6) 29 :
23) Discuss how digital devices may be used to collect, analyze, and present information.

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (7) 7 :
1) Create a function to simplify a task.

Example: Get a writing utensil, get paper, jot notes can collectively be named "note taking".

[DLIT] (7) 8 :
2) Create complex pseudocode using conditionals and Boolean statements.

Example: Automated vacuum pseudocode — drive forward until the unit encounters an obstacle; reverse 2"; rotate 30 degrees to the left, repeat.

[DLIT] (7) 9 :
3) Create algorithms that demonstrate sequencing, selection or iteration.

Examples: Debit card transactions are approved until the account balance is insufficient to fund the transaction = iteration, do until.

[DLIT] (7) 11 :
5) Solve a complex problem using computational thinking.

[DLIT] (7) 12 :
6) Create and organize algorithms in order to automate a process efficiently.

Example: Set of recipes (algorithms) for preparing a complete meal.

[DLIT] (7) 13 :
7) Create a program that updates the value of a variable in the program.

Examples: Update the value of score when a coin is collected (in a flowchart, pseudocode or program).

[DLIT] (7) 22 :
16) Construct content designed for specific audiences through an appropriate medium.

Examples: Design a multi-media children's e-book with an appropriate readability level.

[DLIT] (7) 23 :
17) Publish content to be available for external feedback.

[DLIT] (7) 33 :
27) Identify data needed to create a model or simulation of a given event.

Examples: When creating a random name generator, the program needs access to a list of possible names.

[DLIT] (8) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (8) 7 :
1) Design a function using a programming language that demonstrates abstraction.

Example: Create a program that utilizes functions in an effort remove repetitive sequences of steps.

[DLIT] (8) 9 :
3) Create an algorithm using a programming language that includes the use of sequencing, selections, or iterations.

Example: Use a block-based or script programming language
Step 1: Start
Step 2: Declare variables a, b and c.
Step 3: Read variables a, b and c.
Step 4: If a>b
      If a>c
         Display a is the largest number.
     Else
         Display c is the largest number.
   Else
      If b>c
         Display b is the largest number.
      Else
         Display c is the greatest number.
Step 5: Stop

[DLIT] (8) 10 :
4) Create a function to simplify a task.

Example: 38 = 3*3*3*3*3*3*3*3; =(Average) used in a spreadsheet to average a given list of grades.

[DLIT] (8) 13 :
7) Create a program that includes selection, iteration, or abstraction, and initializes, and updates, at least two variables.

Examples: Make a game, interactive card, story, or adventure game.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 6 Chapter 1 Lesson 9: Make a Game (18-19)
URL: https://studio.code.org/s/csd6-2018/stage/9/puzzle/1
Description:

Students take what they've learned through Unit 6 Chapter 1 and develop an app of their own design that uses the circuit board to output information.

Note: You will need to create a free account on code.org before you can view this resource. 



   View Standards     Standard(s): [DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 33 :
27) Identify data needed to create a model or simulation of a given event.

Examples: When creating a random name generator, the program needs access to a list of possible names.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 5 Chapter 2 Lesson 15: Project - Solve a Data Problem (18-19)
URL: https://studio.code.org/s/csd5-2018/stage/15/puzzle/1?section_id=1888730
Description:

To conclude this unit, students design a recommendation engine based on data that they collect and analyze from their classmates. After looking at an example of a recommendation app, students follow a project guide to complete this multi-day activity. In the first several steps, students choose what choice they want to help the user to make, what data they need to give the recommendation, create a survey, and collect information about their classmates' choices. They then interpret the data and use what they have learned to create the recommendation algorithm. Last, they use their algorithms to make recommendations to a few classmates. Students perform a peer review and make any necessary updates to their projects before preparing a presentation to the class.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (6) 9 :
3) Create pseudocode that uses conditionals.

Examples: Using if/then/else (If it is raining then bring an umbrella else get wet).

[DLIT] (6) 14 :
8) Create a program that initializes a variable.

Example: Create a flowchart in which the variable or object returns to a starting position upon completion of a task.

[DLIT] (6) 29 :
23) Discuss how digital devices may be used to collect, analyze, and present information.

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (7) 8 :
2) Create complex pseudocode using conditionals and Boolean statements.

Example: Automated vacuum pseudocode — drive forward until the unit encounters an obstacle; reverse 2"; rotate 30 degrees to the left, repeat.

[DLIT] (7) 9 :
3) Create algorithms that demonstrate sequencing, selection or iteration.

Examples: Debit card transactions are approved until the account balance is insufficient to fund the transaction = iteration, do until.

[DLIT] (7) 10 :
4) Design a complex algorithm that contains sequencing, selection or iteration.

Examples: Lunch line algorithm that contains parameters for bringing your lunch and multiple options available in the lunch line.

[DLIT] (7) 11 :
5) Solve a complex problem using computational thinking.

[DLIT] (7) 22 :
16) Construct content designed for specific audiences through an appropriate medium.

Examples: Design a multi-media children's e-book with an appropriate readability level.

[DLIT] (7) 33 :
27) Identify data needed to create a model or simulation of a given event.

Examples: When creating a random name generator, the program needs access to a list of possible names.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (8) 7 :
1) Design a function using a programming language that demonstrates abstraction.

Example: Create a program that utilizes functions in an effort remove repetitive sequences of steps.

[DLIT] (8) 13 :
7) Create a program that includes selection, iteration, or abstraction, and initializes, and updates, at least two variables.

Examples: Make a game, interactive card, story, or adventure game.

[DLIT] (8) 29 :
23) Design a digital artifact to propose a solution for a content-related problem.

Example: Create a presentation outlining how to create a cost-efficient method to melt snow on roads during the winter.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 6 Chapter 2 Lesson 16: Prototype an Innovation (18-19)
URL: https://studio.code.org/s/csd6-2018/stage/16/puzzle/1?section_id=1888730
Description:

Students, working with a partner or team will brainstorm physical devices they wish to prototype. Students have the option to design a new creation or recreate a device they have found in the "real world". Students will complete a planning guide to determine the resources (physical and digital) they will need to create their prototype. Students will design a user interface (typically an app or circuit board) that may control some output device (like a circuit board). It will be necessary for students to develop pseudocode or algorithms to aid in the coding process. Students will need to complete the problem-solving process during this lesson plan which will include testing a revising the prototype.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 21 :
15) Discuss unique perspectives and needs of a global culture when developing computational artifacts, including options for accessibility for all users.

Example: Would students create a webpage aimed at reaching a village of users that have no way access to the Internet?

[DLIT] (7) 22 :
16) Construct content designed for specific audiences through an appropriate medium.

Examples: Design a multi-media children's e-book with an appropriate readability level.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 21 :
15) Critique computational artifacts, including options for accessibility for all users, with respect to the needs of a global culture.

[DLIT] (8) 22 :
16) Present content designed for specific audiences through an appropriate medium.

Example: Create and share a help video for a senior's center that provides tips for online safety.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 4 Chapter 2 Lesson 11: Prototype Testing (18-19)
URL: https://studio.code.org/s/csd4-2018/stage/11/puzzle/1
Description:

In this lesson, teams test out their paper prototypes with other members of the class. With one student role playing the computer, one narrating, and the rest observing, teams will get immediate feedback on their app designs which will inform the next version of their app prototypes.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 21 :
15) Discuss unique perspectives and needs of a global culture when developing computational artifacts, including options for accessibility for all users.

Example: Would students create a webpage aimed at reaching a village of users that have no way access to the Internet?

[DLIT] (7) 22 :
16) Construct content designed for specific audiences through an appropriate medium.

Examples: Design a multi-media children's e-book with an appropriate readability level.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 21 :
15) Critique computational artifacts, including options for accessibility for all users, with respect to the needs of a global culture.

[DLIT] (8) 22 :
16) Present content designed for specific audiences through an appropriate medium.

Example: Create and share a help video for a senior's center that provides tips for online safety.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 4 Chapter 2 Lesson 12: Digital Design (18-19)
URL: https://studio.code.org/s/csd4-2018/stage/12/puzzle/1
Description:

Having developed, tested, and gathered feedback on a paper prototype, teams now move to App Lab to build the next iteration of their apps. Using the drag-and-drop Design Mode, each team member builds out at least one page of their team's app, responding to feedback that was received in the previous round of testing.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 21 :
15) Critique computational artifacts, including options for accessibility for all users, with respect to the needs of a global culture.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 4 Chapter 2 Lesson 13: Linking Screens (18-19)
URL: https://studio.code.org/s/csd4-2018/stage/13/puzzle/1
Description:

Building on the screens that the class designed in the previous lesson, teams combine screens into a single app. Simple code can then be added to make button clicks change to the appropriate screen.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 21 :
15) Discuss unique perspectives and needs of a global culture when developing computational artifacts, including options for accessibility for all users.

Example: Would students create a webpage aimed at reaching a village of users that have no way access to the Internet?

[DLIT] (7) 22 :
16) Construct content designed for specific audiences through an appropriate medium.

Examples: Design a multi-media children's e-book with an appropriate readability level.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 21 :
15) Critique computational artifacts, including options for accessibility for all users, with respect to the needs of a global culture.

[DLIT] (8) 22 :
16) Present content designed for specific audiences through an appropriate medium.

Example: Create and share a help video for a senior's center that provides tips for online safety.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 4 Chapter 2 Lesson 14: Testing the App (18-19)
URL: https://studio.code.org/s/csd4-2018/stage/14/puzzle/1
Description:

Teams run another round of user testing, this time with their interactive prototype. Feedback gathered from this round of testing will inform the final iteration of the app prototypes.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 9 :
3) Create pseudocode that uses conditionals.

Examples: Using if/then/else (If it is raining then bring an umbrella else get wet).

[DLIT] (6) 11 :
5) Identify algorithms that make use of sequencing, selection or iteration.

Examples: Sequencing is doing steps in order (put on socks, put on shoes, tie laces); selection uses a Boolean condition to determine which of two parts of an algorithm are used (hair is dirty? True, wash hair; false, do not); iteration is the repetition of part of an algorithm until a condition is met (if you're happy and you know it clap your hands, when you're no longer happy you stop clapping).

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 8 :
2) Create complex pseudocode using conditionals and Boolean statements.

Example: Automated vacuum pseudocode — drive forward until the unit encounters an obstacle; reverse 2"; rotate 30 degrees to the left, repeat.

[DLIT] (7) 9 :
3) Create algorithms that demonstrate sequencing, selection or iteration.

Examples: Debit card transactions are approved until the account balance is insufficient to fund the transaction = iteration, do until.

[DLIT] (7) 10 :
4) Design a complex algorithm that contains sequencing, selection or iteration.

Examples: Lunch line algorithm that contains parameters for bringing your lunch and multiple options available in the lunch line.

[DLIT] (7) 11 :
5) Solve a complex problem using computational thinking.

[DLIT] (7) 12 :
6) Create and organize algorithms in order to automate a process efficiently.

Example: Set of recipes (algorithms) for preparing a complete meal.

[DLIT] (7) 22 :
16) Construct content designed for specific audiences through an appropriate medium.

Examples: Design a multi-media children's e-book with an appropriate readability level.

[DLIT] (7) 23 :
17) Publish content to be available for external feedback.

[DLIT] (8) 9 :
3) Create an algorithm using a programming language that includes the use of sequencing, selections, or iterations.

Example: Use a block-based or script programming language
Step 1: Start
Step 2: Declare variables a, b and c.
Step 3: Read variables a, b and c.
Step 4: If a>b
      If a>c
         Display a is the largest number.
     Else
         Display c is the largest number.
   Else
      If b>c
         Display b is the largest number.
      Else
         Display c is the greatest number.
Step 5: Stop

[DLIT] (8) 10 :
4) Create a function to simplify a task.

Example: 38 = 3*3*3*3*3*3*3*3; =(Average) used in a spreadsheet to average a given list of grades.

[DLIT] (8) 13 :
7) Create a program that includes selection, iteration, or abstraction, and initializes, and updates, at least two variables.

Examples: Make a game, interactive card, story, or adventure game.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 3 Chapter 2 Lesson 22: Project - Design a Game (18-19)
URL: https://studio.code.org/s/csd3-2018/stage/22/puzzle/1
Description:

The class plans and builds original games using the project guide from the previous two lessons. Working individually or in pairs, the class plans, develops, and gives feedback on the games. After incorporating the peer feedback, the class shares out the completed games.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 11 :
5) Identify algorithms that make use of sequencing, selection or iteration.

Examples: Sequencing is doing steps in order (put on socks, put on shoes, tie laces); selection uses a Boolean condition to determine which of two parts of an algorithm are used (hair is dirty? True, wash hair; false, do not); iteration is the repetition of part of an algorithm until a condition is met (if you're happy and you know it clap your hands, when you're no longer happy you stop clapping).

[DLIT] (6) 12 :
6) Identify steps in developing solutions to complex problems using computational thinking.

[DLIT] (6) 14 :
8) Create a program that initializes a variable.

Example: Create a flowchart in which the variable or object returns to a starting position upon completion of a task.

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 10 :
4) Design a complex algorithm that contains sequencing, selection or iteration.

Examples: Lunch line algorithm that contains parameters for bringing your lunch and multiple options available in the lunch line.

[DLIT] (7) 14 :
8) Formulate a narrative for each step of a process and its intended result, given pseudocode or code.

Subject: Digital Literacy and Computer Science (6 - 7)
Title: Computer Science Discoveries Unit 3 Chapter 1 Lesson 7: The Draw Loop (18-19)
URL: https://studio.code.org/s/csd3-2018/stage/7/puzzle/1
Description:

This lesson introduces the draw loop, one of the core programming paradigms in the Game Lab. The class combines the draw loop with random numbers to manipulate some simple animations with dots and then with sprites. Afterward, everyone uses what they learned to update the sprite scene from the previous lesson.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 12 :
6) Identify steps in developing solutions to complex problems using computational thinking.

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 11 :
5) Solve a complex problem using computational thinking.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 11 :
5) Discuss the efficiency of an algorithm or technology used to solve complex problems.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 1 Chapter 1 Lesson 3: Exploring Problem Solving
URL: https://studio.code.org/s/csd1-2018/stage/3/puzzle/1
Description:

In this lesson, the class applies the problem-solving process to three different problems: a word search, a seating arrangement for a birthday party, and planning a trip. The problems grow increasingly complex and poorly defined to highlight how the problem-solving process is particularly helpful when tackling these types of problems.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (6) 12 :
6) Identify steps in developing solutions to complex problems using computational thinking.

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (7) 11 :
5) Solve a complex problem using computational thinking.

[DLIT] (7) 14 :
8) Formulate a narrative for each step of a process and its intended result, given pseudocode or code.

[DLIT] (7) 17 :
11) Demonstrate positive, safe, legal, and ethical habits when creating and sharing digital content and identify the consequences of failing to act responsibly.

[DLIT] (7) 22 :
16) Construct content designed for specific audiences through an appropriate medium.

Examples: Design a multi-media children's e-book with an appropriate readability level.

[DLIT] (7) 23 :
17) Publish content to be available for external feedback.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 2 Chapter 2 Lesson 14: Project - Personal Portfolio Website
URL: https://studio.code.org/s/csd2-2018/stage/14/puzzle/1
Description:

In the last few days of the unit, the class finalizes their personal websites, working with peers to get feedback. Then, the students will review the rubric and put the finishing touches on the site. To cap off the unit, everyone shares their projects and how they were developed.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 11 :
5) Identify algorithms that make use of sequencing, selection or iteration.

Examples: Sequencing is doing steps in order (put on socks, put on shoes, tie laces); selection uses a Boolean condition to determine which of two parts of an algorithm are used (hair is dirty? True, wash hair; false, do not); iteration is the repetition of part of an algorithm until a condition is met (if you're happy and you know it clap your hands, when you're no longer happy you stop clapping).

[DLIT] (6) 12 :
6) Identify steps in developing solutions to complex problems using computational thinking.

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 11 :
5) Solve a complex problem using computational thinking.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 11 :
5) Discuss the efficiency of an algorithm or technology used to solve complex problems.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 1 Chapter 1 Lesson 1: Intro to Problem Solving
URL: https://studio.code.org/s/csd1-2018/stage/1/puzzle/1
Description:

The class works in groups to design aluminum foil boats that will support as many pennies as possible. At the end of the lesson, groups reflect on their experiences with the activity and make connections to the types of problem-solving they will be doing for the rest of the course.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 12 :
6) Identify steps in developing solutions to complex problems using computational thinking.

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

Subject: Digital Literacy and Computer Science (6 - 7)
Title: Computer Science Discoveries Unit 1 Chapter 1 Lesson 2: The Problem Solving Process
URL: https://studio.code.org/s/csd1-2018/stage/2/puzzle/1
Description:

This lesson introduces the formal problem-solving process that the class will use over the course of the year: Define - Prepare - Try - Reflect. The class relates these steps to the aluminum boat problem from the previous lesson, then a problem they are good at solving, then a problem they want to improve at solving. At the end of the lesson, the class collects a list of generally useful strategies for each step of the process to put on posters that will be used throughout the unit and year.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 29 :
23) Discuss how digital devices may be used to collect, analyze, and present information.

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 11 :
5) Solve a complex problem using computational thinking.

[DLIT] (7) 22 :
16) Construct content designed for specific audiences through an appropriate medium.

Examples: Design a multi-media children's e-book with an appropriate readability level.

[DLIT] (7) 35 :
29) Compare and contrast human intelligence and artificial intelligence.

[DLIT] (8) 22 :
16) Present content designed for specific audiences through an appropriate medium.

Example: Create and share a help video for a senior's center that provides tips for online safety.

[DLIT] (8) 29 :
23) Design a digital artifact to propose a solution for a content-related problem.

Example: Create a presentation outlining how to create a cost-efficient method to melt snow on roads during the winter.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 1 Chapter 2 Lesson 8: Propose an App
URL: https://studio.code.org/s/csd1-2018/stage/8/puzzle/1
Description:

To conclude the study of the problem-solving process and the input/output/store/process model of a computer, the class proposes apps designed to solve real-world problems. This project is completed across multiple days and culminates in a poster presentation highlighting the features of each app. The project is designed to be completed in pairs though it can be completed individually.

Note: You will need to create a free account on code.org before you can view this resource.



ALEX Classroom Resources: 18

Go To Top of page