ALEX Classroom Resource

  

Steve Trash Science: Sun, Sun, Sunshine / Earth is Wicked Awesome

  Classroom Resource Information  

Title:

Steve Trash Science: Sun, Sun, Sunshine / Earth is Wicked Awesome

URL:

https://www.pbs.org/video/sun-sun-sunshine-earth-is-wicked-awesome-ttglxd/

Content Source:

PBS
Type: Audio/Video

Overview:

Steve Trash teaches kids about science with fun and magic. The show is filmed in Alabama.

The sun is the center of our solar system and it’s really important to all living things. The Earth has a very unique place for living things in our galaxy – The Milky Way. Steve puts the sun and Earth into perspective with fun... and a little magic.

Content Standard(s):
Science
SC2015 (2015)
Grade: 4
5 ) Compile information to describe how the use of energy derived from natural renewable and nonrenewable resources affects the environment (e.g., constructing dams to harness energy from water, a renewable resource, while causing a loss of animal habitats; burning of fossil fuels, a nonrenewable resource, while causing an increase in air pollution; installing solar panels to harness energy from the sun, a renewable resource, while requiring specialized materials that necessitate mining).


NAEP Framework
NAEP Statement::
E4.6: Some Earth materials have properties either in their present form or after design and modification that make them useful in solving human problems and enhancing the quality of life, as in the case of materials used for building or fuels used for heating and transportation.

NAEP Statement::
E4.7: The Sun warms the land, air, and water and helps plants grow.


Unpacked Content
Scientific And Engineering Practices:
Obtaining, Evaluating, and Communicating Information
Crosscutting Concepts: Cause and Effect
Disciplinary Core Idea: Energy
Evidence Of Student Attainment:
Students:
  • Combine information across complex texts and other reliable media to describe how the use of energy derived from natural renewable and nonrenewable resources affects the environments.
Teacher Vocabulary:
  • natural resources
  • natural renewable resources
  • nonrenewable resources
  • fossil fuels
  • air pollution
  • pollution
  • solar energy
  • environment
  • effects
  • affects
  • habitat
  • solar panel
  • impact
  • solution
  • derived
  • harness
Knowledge:
Students know:
  • How energy is derived from natural resources.
  • How energy resources derived from natural resources address human energy needs.
  • Positive and negative environmental effects of using each energy resource.
  • The role of technology in improving or mediating the environmental effects of using a given resource.
Skills:
Students are able to:
  • Waves, which are the regular patterns of motion, can be made in water by disturbing the surface.
  • When waves move across the surface of deep water, the water goes up and down in place; there is no net motion in the direction of the wave except when the water meets a beach.
  • Waves of the same type can differ in amplitude (height of the wave) and wavelength (spacing between wave peaks).
Understanding:
Students understand that:
  • Energy and fuels that humans use are derived from natural sources, and their use affects the environment in numerous ways.
  • Resources are renewable over time, while others are not.

Alabama Alternate Achievement Standards
AAS Standard:
SCI.AAS.4.5- Identify common resources as renewable or nonrenewable.


Science
SC2015 (2015)
Grade: 5
10 ) Construct and interpret models (e.g., diagrams, flow charts) to explain that energy in animals' food is used for body repair, growth, motion, and maintenance of body warmth and was once energy from the sun.

Unpacked Content
Scientific And Engineering Practices:
Developing and Using Models
Crosscutting Concepts: Energy and Matter
Disciplinary Core Idea: Ecosystems: Interactions, Energy, and Dynamics
Evidence Of Student Attainment:
Students:
  • Through constructing and using models, explain that energy in animals' food used for body repair, growth, motion, and maintenance of body warmth was once energy from the sun.
Teacher Vocabulary:
  • Model
  • Energy
  • Repair
  • Growth
  • Motion
  • Maintenance
  • Animal
  • Plant
Knowledge:
Students know:
  • The energy released [from] food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (from air and water).
  • Food provides animals with the materials they need for body repair and growth and the energy they need to maintain body warmth and for motion.
Skills:
Students are able to:
  • Use models to describe a phenomenon that includes the idea that energy in animals' food was once energy from the sun. Students identify and describe the components of the model that are relevant for describing the phenomenon, including the following:
    • Energy.
    • The sun.
    • Animals, including their bodily functions (e.g., body repair, growth, motion, body warmth maintenance).
    • Plants.
  • Identify and describe the relevant relationships between components, including the following:
    • The relationship between plants and the energy they get from sunlight to produce food.
    • The relationship between food and the energy and materials that animals require for bodily functions (e.g., body repair, growth, motion, body warmth maintenance).
    • The relationship between animals and the food they eat, which is either other animals or plants (or both), to obtain energy for bodily functions and materials for growth and repair.
  • Use the models to describe causal accounts of the relationships between energy from the sun and animals' needs for energy, including that:
    • Since all food can eventually be traced back to plants, all of the energy that animals use for body repair, growth, motion, and body warmth maintenance is energy that once came from the sun.
    • Energy from the sun is transferred to animals through a chain of events that begins with plants producing food then being eaten by animals.
Understanding:
Students understand that:
  • Energy can be transferred in various ways and between objects.
AMSTI Resources:
AMSTI Module:
Dynamics of Ecosystems

Alabama Alternate Achievement Standards
AAS Standard:
SCI.AAS.5.10- Identify that animals get their energy to grow and move from food (plants and animals); recognize that this energy was once from the sun.


Science
SC2015 (2015)
Grade: 5
12 ) Defend the claim that one factor determining the apparent brightness of the sun compared to other stars is the relative distance from Earth.

Unpacked Content
Scientific And Engineering Practices:
Engaging in Argument from Evidence
Crosscutting Concepts: Scale, Proportion, and Quantity
Disciplinary Core Idea: Earth's Place in the Universe
Evidence Of Student Attainment:
Students:
  • Support a claim that the apparent brightness of the sun compared to other stars is due to the relative distance from the Earth.
Teacher Vocabulary:
  • Defend
  • Claim
  • Factor
  • Evidence
  • Apparent Brightness
  • Relative Distance
  • Sun
  • Stars
  • Earth
  • Reasoning
  • Argumentation
Knowledge:
Students know:
  • The sun and other stars are natural bodies in the sky that give off their own light.
  • The sun is a star that appears larger and brighter than other stars because it is closer.
  • Stars range greatly in their distance from Earth.
  • A luminous object close to a person appears much brighter and larger than a similar object that is very far away from a person (e.g., nearby streetlights appear bigger and brighter than distant streetlights).
Skills:
Students are able to:
  • Identify a given claim to be supported about a given phenomenon. The claim includes the idea that the apparent brightness of the sun and stars is due to their relative distances from Earth.
  • Describe the evidence, data, and/or models that support the claim, including the following:
    • The sun and other stars are natural bodies in the sky that give off their own light.
    • The apparent brightness of a variety of stars, including the sun.
    • A luminous object close to a person appears much brighter and larger than a similar object that is very far away from a person (e.g., nearby streetlights appear bigger and brighter than distant streetlights).
    • The relative distance of the sun and stars from Earth (e.g., although the sun and other stars are all far from the Earth, the stars are very much farther away; the sun is much closer to Earth than other stars).
  • Evaluate the evidence to determine whether it is relevant to supporting the claim, and sufficient to describe the relationship between apparent size and apparent brightness of the sun and other stars and their relative distances from Earth.
  • Use reasoning to connect the relevant and appropriate evidence to the claim with argumentation. Describe a chain of reasoning that includes the following:
    • Because stars are defined as natural bodies that give off their own light, the sun is a star.
    • The sun is many times larger than Earth but appears small because it is very far away.
    • Even though the sun is very far from Earth, it is much closer than other stars.
Understanding:
Students understand that:
  • Natural objects, like the sun and stars, exist from the very small to the immensely large.
AMSTI Resources:
AMSTI Module:
Earth: Gravity and Space

Alabama Alternate Achievement Standards
AAS Standard:
SCI.AAS.5.12- Using a model, identify that distance affects the brightness of stars.


Science
SC2015 (2015)
Grade: 5
14 ) Use a model to represent how any two systems, specifically the atmosphere, biosphere, geosphere, and/or hydrosphere, interact and support life (e.g., influence of the ocean on ecosystems, landform shape, and climate; influence of the atmosphere on landforms and ecosystems through weather and climate; influence of mountain ranges on winds and clouds in the atmosphere).

Unpacked Content
Scientific And Engineering Practices:
Developing and Using Models
Crosscutting Concepts: Systems and System Models
Disciplinary Core Idea: Earth's Systems
Evidence Of Student Attainment:
Students:
  • Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.
Teacher Vocabulary:
  • Atmosphere
  • Hydrosphere
  • Geosphere
  • Biosphere
  • Model
  • Phenomenon
  • System
  • Earth
Knowledge:
Students know:
  • Earth's major systems are the geosphere (solid and molten rock, soil, and sediments), the hydrosphere (water and ice), the atmosphere, and the biosphere (living things, including humans).
  • These systems interact in multiple ways to affect Earth's surface materials and processes.
  • The ocean supports a variety of ecosystems and organisms, shapes landforms, and influences climate.
  • Winds and clouds in the atmosphere interact with the landforms to determine patterns of weather.
Skills:
Students are able to:
  • Develop a model, using a specific given example of a phenomenon, to describe ways that the geosphere, biosphere, hydrosphere, and/or atmosphere interact. In the model, identify the relevant components of their example, including features of two of the following systems that are relevant for the given example:
    • Geosphere (i.e., solid and molten rock, soil, sediment, continents, mountains).
    • Hydrosphere (i.e., water and ice in the form of rivers, lakes, glaciers).
    • Atmosphere (i.e., wind, oxygen).
    • Biosphere [i.e., plants, animals (including humans)].
  • Identify and describe relationships (interactions) within and between the parts of the Earth systems identified in the model that are relevant to the example (e.g., the atmosphere and the hydrosphere interact by exchanging water through evaporation and precipitation; the hydrosphere and atmosphere interact through air temperature changes, which lead to the formation or melting of ice).
  • Use the model to describe a variety of ways in which the parts of two major Earth systems in the specific given example interact to affect the Earth's surface materials and processes in that context. Use the model to describe how parts of an individual Earth system:
    • Work together to affect the functioning of that Earth system.
    • Contribute to the functioning of the other relevant Earth system.
Understanding:
Students understand that:
  • Systems, like the atmosphere, biosphere, geosphere, and hydrosphere, can be described in terms of their components and their interactions.
AMSTI Resources:
AMSTI Module:
Dynamics of Ecosystems

Alabama Alternate Achievement Standards
AAS Standard:
SCI.AAS.5.14- Identify how the atmosphere and hydrosphere interact to support life (e.g. air, water).


Science
SC2015 (2015)
Grade: 6
Earth and Space Science
3 ) Develop and use models to determine scale properties of objects in the solar system (e.g., scale model representing sizes and distances of the sun, Earth, moon system based on a one-meter diameter sun).

Unpacked Content
Scientific And Engineering Practices:
Developing and Using Models
Crosscutting Concepts: Scale, Proportion, and Quantity
Disciplinary Core Idea: Earth's Place in the Universe
Evidence Of Student Attainment:
Students:
  • Develop models to determine scale properties of objects in the solar system.
  • Use models to determine scale properties of objects in the solar system.
Teacher Vocabulary:
  • Model
  • Scale
  • Scale model
  • Properties
  • Size
  • Distance
  • Diameter
  • Solar system
  • Planet
  • Moon
  • Sun
  • Asteroid
  • Asteroid belt
  • Celestial body
Knowledge:
Students know:
  • A (scale) model is a representation or copy of an object that is larger or smaller than the actual size of the object being represented.
  • Measurements may be multiplied or divided to correctly scale objects in a model.
  • Charts and data tables may be analyzed to find patterns in data.
  • Patterns can be used to describe similarities and differences in objects in the solar system.
  • Systems and their properties may be described using more than one scale.
Skills:
Students are able to:
  • Develop a model of objects in the solar system and identify the relevant components.
  • Describe that different representations illustrate different characteristics of objects in the solar system, including differences in scale.
  • Use mathematics and computational thinking to determine scale properties.
  • Describe that two objects may be similar when viewed at one scale but may appear to be quite different when viewed at a different scale.
Understanding:
Students understand that:
  • The solar system consists of the sun and a collection of objects, including planets, their moons, and asteroids that are held in orbit around the sun by its gravitational pull on them.
  • Space phenomena can be observed at various scales using models to study systems that are too large or too small.
AMSTI Resources:
AMSTI Module:
Researching the Sun-Earth-Moon System
Exploring Planetary Systems

Alabama Alternate Achievement Standards
AAS Standard:
SCI.AAS.6.3- Use a model to compare the relative sizes of objects in the solar system (e.g., sun, Earth, moon).


Tags: Alabama Public Television, APTV, atmosphere, biosphere, earth, galaxy, geosphere, hydrosphere, nonrenewable, renewable, resource, solar energy, solar system, Steve Trash, sun
License Type: Custom Permission Type
See Terms: https://www.pbs.org/about/about-pbs/terms-of-use/
For full descriptions of license types and a guide to usage, visit :
https://creativecommons.org/licenses
AccessibilityVideo resources: includes closed captioning or subtitles
Comments

In the first half of the video, students will learn facts about the sun and how the sun is a source of energy for living things on Earth. Steve Trash will describe how we can harness the sun's energy to power various objects on Earth. He will also show a scaled model of the Earth and sun, which students can use to develop their own scaled models. In the second half of the video, students will learn about the objects in our solar system and in our galaxy, the Milky Way. Steve Trash will describe the unique systems on earth, including the atmosphere, biosphere, geosphere, and hydrosphere. Students can use this knowledge to create their own models. 

  This resource provided by:  
Author: Hannah Bradley
Alabama State Department of Education