ALEX Classroom Resource

  

Formulas: Volume

  Classroom Resource Information  

Title:

Formulas: Volume

URL:

https://aptv.pbslearningmedia.org/resource/ketae.geo.volume/formulas-volume/

Content Source:

PBS
Type: Informational Material

Overview:

Volume is the measure of how much space there is within a three-dimensional object (one with length, width, and height). Watch the video for an explanation of the formula for volume.

Content Standard(s):
Mathematics
MA2019 (2019)
Grade: 5
19. Relate volume to the operations of multiplication and addition, and solve real-world and mathematical problems involving volume.

a. Use the associative property of multiplication to find the volume of a right rectangular prism and relate it to packing the prism with unit cubes. Show that the volume can be determined by multiplying the three edge lengths or by multiplying the height by the area of the base.

b. Apply the formulas V = l x w x h and V = B x h for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real-world and mathematical problems.

c. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the two parts, applying this technique to solve real-world problems.
Unpacked Content
Evidence Of Student Attainment:
Students:
Given right rectangular prisms with whole number edge lengths,
  • Use associative property of multiplication to find volume and relate it to packing a solid with unit cubes.
  • Apply formula V = l × w × h, where V represents volume and l, w, and h represent the three dimensions of the prism (length, width, height) and relate the formula to a unit cube filled model.
  • Apply formula V = B × h, where V represents volume, B is the base-area, and h represents the height (number of layers of the base-area) and relate the formula to a unit cube filled model.

  • Given a solid figure composed of two or more right rectangular prisms in real-world or mathematical contexts, find the total volume by decomposing the figure into non-overlapping rectangular prisms and find the sum of the volumes.
Teacher Vocabulary:
  • Volume
  • Unit cube
  • Rectangular prism
  • Base
  • Base-area
  • Dimensions
  • Face
  • Length
  • Width
  • Height
  • Layers
  • Edge
  • Equivalent
  • Conservation of volume
  • Attribute
  • Composition
  • Decomposition
  • Formula
Knowledge:
Students know:
  • Measurable attributes of area and how it relates to finding the volume of objects.
  • Units of measurement for volume, specifically unit cubes.
Skills:
Students are able to:
  • Solve word problems involving volume.
  • Use associative property of multiplication to find volume.
  • Relate operations of multiplication and addition to finding volume.
  • Apply formulas to find volume of right rectangular prisms.
  • Find volume of solid figures composed of two rectangular prisms.
Understanding:
Students understand that:
  • Volume is a derived attribute based on a length unit and can be computed as the product of three length measurements or as the product of one base area and one length measurement.
  • Volume is an extension of area and can be found as the area of the base being repeated for a given number of layers.
Diverse Learning Needs:
Essential Skills:
Learning Objectives:
M.5.19.1: Define volume.
M.5.19.2: Recognize angle measure as additive.
M.5.19.3: Apply the area and perimeter formulas for rectangles in real-world and mathematical problems.
M.5.19.4: Solve real-world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.
M.5.19.5: Recognize the formula for volume.
M.5.19.6: Recall the attributes of three-dimensional solids.
M.5.19.7: Recall basic multiplication facts.
M.5.19.8: Fluently add.
M.5.19.9: Compare the unit size of volume/capacity in the metric system including milliliters and liters.
M.5.19.10: Measure and estimate liquid volumes.
M.5.19.11: Recall basic multiplication facts.
M.5.19.12: Compare the unit size of volume/capacity in the metric system including milliliters and liters.
M.5.19.13: Recognize the formula for volume.
M.5.19.14: Recall basic multiplication facts.
M.5.19.15: Describe attributes of three-dimensional figures.
M.5.19.16: Describe attributes of two-dimensional figures.
M.5.19.17: Identify solid figures.

Prior Knowledge Skills:
  • Count unit cubes to find volume.
  • Demonstrate volume by packing a solid figure with unit cubes.
  • Convert measurement units.
  • Solve mulit-step word problems involving measurement conversions.

Alabama Alternate Achievement Standards
AAS Standard:
M.AAS.5.19 Determine the volume of a rectangular prism by counting units of measurement (e.g., unit cubes).


Mathematics
MA2019 (2019)
Grade: 7
Accelerated
41. Use formulas to calculate the volumes of three-dimensional figures to solve real-world problems. [Grade 8, 30]
Unpacked Content
Evidence Of Student Attainment:
Students:
  • Understand that the application of volume formulas and the relationship between these three formulas can be used in combinations when determining solutions involving real-world cylinders, cones, and spheres.
Teacher Vocabulary:
  • Radius
  • Pi
  • Volume
  • Cylinder
  • Cone
  • Sphere
Knowledge:
Students know:
  • the volume formulas for cylinders, cones, and spheres.
  • That 3.14 is an approximation of pi commonly used in these volume formulas.
  • That composite three dimensional objects in the real-world can be created by combining cylinders, cones, and spheres in part or whole.
Skills:
Students are able to:
  • calculate the volume of cones, cylinders, and spheres given in real-world contexts. often times approximating solutions to a specified decimal place.
  • Identify the components of a composite figure as being portions of or whole cylinders, cones, and spheres.
  • Combine the results of calculations to find volume for real-world composite figures.
Understanding:
Students understand that:
  • the application of volume formulas and the relationship between these three formulas can be used in combinations when determining solutions involving real-world cylinders, cones, and spheres.
Diverse Learning Needs:
Mathematics
MA2019 (2019)
Grade: 8
30. Use formulas to calculate the volumes of three-dimensional figures (cylinders, cones, and spheres) to solve real-world problems.
Unpacked Content
Evidence Of Student Attainment:
Students:
  • Understand that the application of volume formulas and the relationship between these three formulas can be used in combinations when determining solutions involving real-world cylinders, cones, and spheres.
Teacher Vocabulary:
  • Radius
  • Pi
  • Volume
  • Cylinder
  • Cone
  • Sphere
Knowledge:
Students know:
  • The volume formulas for cylinders, cones, and spheres.
  • That 3.14 is an approximation of pi commonly used in these volume formulas.
  • That composite three dimensional objects in the real-world can be created by combining cylinders, cones, and spheres in part or whole.
Skills:
Students are able to:
  • Calculate the volume of cones, cylinders, and spheres given in real-world contexts. often times approximating solutions to a specified decimal place.
  • Identify the components of a composite figure as being portions of or whole cylinders, cones, and spheres.
  • Combine the results of calculations to find volume for real-world composite figures.
Understanding:
Students understand that:
  • the application of volume formulas and the relationship between these three formulas can be used in combinations when determining solutions involving real-world cylinders, cones, and spheres.
Diverse Learning Needs:
Essential Skills:
Learning Objectives:
M.8.30.1: Define formula, volume, cone, cylinders, spheres, and height.
M.8.30.2: Discuss the measure of volume and give examples.
M.8.30.3: Solve problems with exponents, with or without a calculator.
M.8.30.4: Recall how to find circumference of a circle, with or without a calculator.
M.8.30.5: Identify parts of a circle.
M.8.30.6: Calculate the volume of three-dimensional figures.
M.8.30.7: Solve real-world problems using the volume formulas for three-dimensional figures, with or without a calculator.

Prior Knowledge Skills:
  • Define volume, surface area, triangles, quadrilaterals, polygons, cubes, and right prisms.
  • Discuss strategies for solving real-world mathematical problems.
  • Recall formulas for calculating volume and surface area.
  • Identify the attributes of triangles, quadrilaterals, polygons, cubes, and right prisms.
  • Define diameter, radius, circumference, area of a circle, and formula.
  • Identify and label parts of a circle.
  • Recognize the attributes of a circle.
  • Apply the formula of area and circumference to real-world mathematical situations.

Alabama Alternate Achievement Standards
AAS Standard:
M.AAS.8.30 Use the formulas for perimeter, area, and volume to solve real-world and mathematical problems (where volume problems are limited to finding the volume of cylinders and rectangular prisms).


Tags: formulas, height, length, volume, width
License Type: Attribution Non-Commercial No Derivatives
For full descriptions of license types and a guide to usage, visit :
https://creativecommons.org/licenses
Accessibility
Comments

This resource contais a background essay and discussion questions.

  This resource provided by:  
Author: Kristy Lacks
Alabama State Department of Education