ALEX Classroom Resource

  

Equivalent Quadratic Expressions

  Classroom Resource Information  

Title:

Equivalent Quadratic Expressions

URL:

https://aptv.pbslearningmedia.org/resource/im20-math-ep7-68/equivalent-quadratic-expressions/

Content Source:

PBS
Type: Audio/Video

Overview:

This video lesson transitions students from reasoning concretely and contextually about quadratic functions to reasoning about their representations in ways that are more abstract and formal (MP2).

In earlier grades, students reasoned about multiplication by thinking of the product as the area of a rectangle where the two factors being multiplied are the side lengths of the rectangle. In this lesson, students use this familiar reasoning to expand expressions such as (x + 4)(x + 7), where x + 4, and x + 7 are side lengths of a rectangle with each side length decomposed into x and a number. They use the structure in the diagrams to help them write equivalent expressions in expanded form, for example, x2 + 11x + 28 (MP7). Students recognize that finding the sum of the partial areas in the rectangle is the same as applying the distributive property to multiply out the terms in each factor.

The terms “standard form” and “factored form” are not yet used and will be introduced in an upcoming lesson, after students have had some experience working with the expressions.

Content Standard(s):
Mathematics
MA2019 (2019)
Grade: 8
Accelerated
5. Use the structure of an expression to identify ways to rewrite it. [Algebra I with Probability, 5]

Example: See x4 - y4 as (x2)2 - (y2)2, thus recognizing it as a difference of squares that can be factored as (x2 - y2)(x2 + y2).
Unpacked Content
Evidence Of Student Attainment:
Students:
  • Rewrite algebraic expressions by combining like terms or factoring to reveal equivalent forms of the same expression.
Teacher Vocabulary:
  • like terms
  • Expression
  • Factor
  • properties of operations (Appendix D, Table 1)
  • Difference of squares
Knowledge:
Students know:
  • Properties of operations (including those in Appendix D, Table 1),
  • When one form of an algebraic expression is more useful than an equivalent form of that same expression.
Skills:
Students are able to:
  • -Use algebraic properties to produce equivalent forms of the same expression by recognizing underlying mathematical structures.
    For example, 3(x-5) = 3x-15 and 2a+12 = 2(a+6) or 3a-a+10+2and x2-2x-15 = (x-5) (x+3).
Understanding:
Students understand that:
  • Generating simpler, but equivalent, algebraic expressions facilitates the investigation of more complex algebraic expressions.
Diverse Learning Needs:
Mathematics
MA2019 (2019)
Grade: 8
Accelerated
26. Distinguish between situations that can be modeled with linear functions and those that can be modeled with exponential functions.

a. Show that linear functions grow by equal differences over equal intervals, while exponential functions grow by equal factors over equal intervals.

b. Define linear functions to represent situations in which one quantity changes at a constant rate per unit interval relative to another.

c. Define exponential functions to represent situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another. [Algebra I with Probability, 24]
Unpacked Content
Evidence Of Student Attainment:
Students:
Given a linear or exponential function,
  • Create a sequence from the functions and examine the results to demonstrate that linear functions grow by equal differences, and exponential functions grow by equal factors over equal intervals.
  • Use slope-intercept form of a linear function and the general definition of exponential functions to justify through algebraic rearrangements that linear functions grow by equal differences, and exponential functions grow by equal factors over equal intervals.

  • Given a contextual situation modeled by functions, determine if the change in the output per unit interval is a constant being added or multiplied to a previous output, and appropriately label the function as linear, exponential, or neither.
Teacher Vocabulary:
  • Linear functions
  • Exponential functions
  • Constant rate of change
  • Constant percent rate of change
  • Intervals
  • Percentage of growth
  • Percentage of decay
  • Slope-intercept form of a line
Knowledge:
Students know:
  • Key components of linear and exponential functions.
  • Properties of operations and equality
Skills:
Students are able to:
  • Accurately determine relationships of data from a contextual situation to determine if the situation is one in which one quantity changes at a constant rate per unit interval relative to another (linear).
  • Accurately determine relationships of data from a contextual situation to determine if the situation is one in which one quantity grows or decays by a constant percent rate per unit interval relative to another (exponential).
Understanding:
Students understand that:
  • Linear functions have a constant value added per unit interval, and exponential functions have a constant value multiplied per unit interval.
  • Distinguishing key features of and categorizing functions facilitates mathematical modeling and aids in problem resolution.
Diverse Learning Needs:
Mathematics
MA2019 (2019)
Grade: 9-12
Algebra I with Probability
5. Use the structure of an expression to identify ways to rewrite it.

Example: See x4 - y4 as (x2)2 - (y2)2, thus recognizing it as a difference of squares that can be factored as (x2 - y2)(x2 + y2).
Unpacked Content
Evidence Of Student Attainment:
Students:
  • Make sense of algebraic expressions by identifying structures within the expression which allow them to rewrite it in useful and more efficient ways.
Teacher Vocabulary:
  • Terms
  • Linear expressions
  • Equivalent expressions
  • Difference of two squares
  • Factor
  • Difference of squares
Knowledge:
Students know:
  • Algebraic properties.
  • When one form of an algebraic expression is more useful than an equivalent form of that same expression.
Skills:
Students are able to:
  • Use algebraic properties to produce equivalent forms of the same expression by recognizing underlying mathematical structures.
Understanding:
Students understand that:
  • Generating equivalent algebraic expressions facilitates the investigation of more complex algebraic expressions.
Diverse Learning Needs:
Essential Skills:
Learning Objectives:
ALGI.5.1: Define equivalent expressions.
ALGI.5.2: Rewrite an exponential expression in an alternative way.
ALGI.5.3: Rewrite a quadratic expression in an alternative way.
ALGI.5.4: Rewrite a linear expression in an alternative form.
ALGI.5.5: Understand that rewriting an expression in different forms in a problem context can shed light on the problem.
ALGI.5.6: Recall properties of exponents.

Prior Knowledge Skills:
    li>Give examples of the properties of operations including distributive, commutative, and associative.
  • Recall how to find the greatest common factor.
  • Combine like terms of a given expression.
  • Recognize the property demonstrated in a given expression.
  • Simplify expressions with parentheses (Ex. 5(4 + x) = 20 + 5x).
  • Simplify an expression by dividing by the greatest common factor (Ex. 18x + 6y= 6(3x + y).
  • Define linear expression, rational, coefficient, and rational coefficient.
    Example: See x4 - y4 as (x2)2 - (y2)2, thus recognizing it as a difference of squares that can be factored as (x2
  • y2)(x2 + y2).

Alabama Alternate Achievement Standards
AAS Standard:
M.A.AAS.11.5 Solve simple algebraic equations using real-world scenarios with one variable using multiplication or division.


Mathematics
MA2019 (2019)
Grade: 9-12
Algebra I with Probability
24. Distinguish between situations that can be modeled with linear functions and those that can be modeled with exponential functions.

a. Show that linear functions grow by equal differences over equal intervals, while exponential functions grow by equal factors over equal intervals.

b. Define linear functions to represent situations in which one quantity changes at a constant rate per unit interval relative to another.

c. Define exponential functions to represent situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
Unpacked Content
Evidence Of Student Attainment:
Students:
Given a linear or exponential function,
  • Create a sequence from the functions and examine the results to demonstrate that linear functions grow by equal differences, and exponential functions grow by equal factors over equal intervals.
  • Use slope-intercept form of a linear function and the general definition of exponential functions to justify through algebraic rearrangements that linear functions grow by equal differences, and exponential functions grow by equal factors over equal intervals.

  • Given a contextual situation modeled by functions, determine if the change in the output per unit interval is a constant being added or multiplied to a previous output, and appropriately label the function as linear, exponential, or neither.
Teacher Vocabulary:
  • Linear functions
  • Exponential functions
  • Constant rate of change
  • Constant percent rate of change
  • Intervals
  • Percentage of growth
  • Percentage of decay
Knowledge:
Students know:
  • Key components of linear and exponential functions.
  • Properties of operations and equality
Skills:
Students are able to:
  • Accurately determine relationships of data from a contextual situation to determine if the situation is one in which one quantity changes at a constant rate per unit interval relative to another (linear).
  • Accurately determine relationships of data from a contextual situation to determine if the situation is one in which one quantity grows or decays by a constant percent rate per unit interval relative to another (exponential).
Understanding:
Students understand that:
  • Linear functions have a constant value added per unit interval, and exponential functions have a constant value multiplied per unit interval.
  • Distinguishing key features of and categorizing functions facilitates mathematical modeling and aids in problem resolution.
Diverse Learning Needs:
Essential Skills:
Learning Objectives:
ALGI.24.1: Define linear function and exponential function.
ALGI.24.2: Distinguish between graphs of a line and an exponential function.
ALGI.24.3: Identify the graph of an exponential function.
ALGI.24.4: Identify the graph of a line.
ALGI.24.5: Plot points on a coordinate plane from a given table of values. a.
ALGI.24.6: Divide each y-value in a table of values by its successive y-value to determine if the quotients are the same, to prove an exponential function.
ALGI.24.7: Subtract each y-value in a table of values by its successive y-value to determine if the differences are the same, to prove a linear function.
ALGI.24.8: Apply rules for adding, subtracting, multiplying, and dividing integers. b.
ALGI.24.9: Define constant rate of change as slope.
ALGI.24.10: Subtract each y-value in a table of values by its successive y-value to determine if the differences are the same, to prove a linear function.
ALGI.24.11: Recognize the calculated difference is the constant rate of change.
ALGI.24.12: Apply rules for adding, subtracting, multiplying, and dividing integers. c.
ALGI.24.13: Define exponential growth and decay.
ALGI.24.14: Divide each y-value in a table of values by its successive y-value to determine if the quotients are the same, to prove an exponential function.
ALGI.24.15: Apply the rules of multiplication and division of integers.

Prior Knowledge Skills:
  • Recognize ordered pairs.
  • Identify ordered pairs.
  • Recognize linear equations.
  • Recall how to solve problems using the distributive property.
  • Define linear and nonlinear functions, slope, and y-intercept.
  • Analyze the graph to determine the rate of change.

Alabama Alternate Achievement Standards
AAS Standard:
M.A.AAS.12.24 Given a simple linear function on a graph, select the model that represents an increase by equal amounts over equal intervals.


Tags: equivalent expressions, expanded form, reasoning, sum of partial areas
License Type: Custom Permission Type
See Terms: For full descriptions of license types and a guide to usage, visit : https://creativecommons.org/licenses
For full descriptions of license types and a guide to usage, visit :
https://creativecommons.org/licenses
AccessibilityVideo resources: includes closed captioning or subtitles
Comments

This resource has student task statements and practice problem worksheets.

  This resource provided by:  
Author: Kristy Lacks
Alabama State Department of Education