ALEX Classroom Resource

  

Identifying an Unknown Liquid

  Classroom Resource Information  

Title:

Identifying an Unknown Liquid

URL:

https://www.acs.org/content/acs/en/education/resources/k-8/inquiryinaction/fifth-grade/substances-have-characteristic-properties/lesson2-2--identifying-an-unknown-liquid.html

Content Source:

Other
American Chemical Society
Type: Lesson/Unit Plan

Overview:

In this lesson, students will be able to plan and carry out an investigation to identify a liquid based on how it interacts on different paper surfaces. Students will also be able to explain that since different liquids are made of different atoms and molecules, they act in their own characteristic way. Students will test four known liquids and an unknown liquid on two different paper surfaces. They will use their observations to identify an unknown liquid. Students will realize that by using a combination of results from two tests, they can successfully identify an unknown liquid. Students will also add water and saltwater to green food coloring on a coffee filter. They see a distinct difference in the way each liquid makes the colors in green food coloring separate.

Content Standard(s):
Science
SC2015 (2015)
Grade: 5
1 ) Plan and carry out investigations (e.g., adding air to expand a basketball, compressing air in a syringe, dissolving sugar in water, evaporating salt water) to provide evidence that matter is made of particles too small to be seen.


NAEP Framework
NAEP Statement::
P4.3: Matter exists in several different states; the most common states are solid, liquid, and gas. Each state of matter has unique properties. For instance, gases are easily compressed while solids and liquids are not. The shape of a solid is independent of its container; liquids and gases take the shape of their containers.

NAEP Statement::
P4.4: Some objects are composed of a single substance; others are composed of more than one substance.

NAEP Statement::
P8.1: Properties of solids, liquids, and gases are explained by a model of matter that is composed of tiny particles in motion.


Unpacked Content
Scientific And Engineering Practices:
Planning and Carrying out Investigations
Crosscutting Concepts: Scale, Proportion, and Quantity
Disciplinary Core Idea: Matter and Its Interactions
Evidence Of Student Attainment:
Students:
  • Provide evidence based on investigation results that matter is made of particles too small to be seen.
Teacher Vocabulary:
  • Investigation
  • Variable
  • Data
  • Hypothesis
  • Conclusion
  • Matter
  • Describe
  • Observe
  • Evidence
  • Immensely
  • Bulk matter
  • Particle
Knowledge:
Students know:
  • Matter is made of particles too small to be seen Matter too small to be seen still exists and may be detected by other means.
  • Gasses are made of matter particles that are too small to see, and are moving freely around in space (this can explain many observations, including the inflation and the shape of the balloon, and the effects of air on larger particles or objects).
  • The behavior of a collection of many tiny particles of matter and observable phenomena involving bulk matter (e.g., an expanding balloon, evaporating liquids, substances that dissolve in a solvent, effects of wind).
  • There is a relationship between bulk matter and tiny particles that cannot be seen.
Skills:
Students are able to:
  • Identify the phenomenon under investigation.
  • Identify evidence that addresses the purpose of the investigation.
  • Collaboratively plan the investigation.
  • Collect and analyze the data.
Understanding:
Students understand that:
  • Natural objects exist from the very small to the immensely large.
AMSTI Resources:
AMSTI Module:
Matter and Interactions

Alabama Alternate Achievement Standards
AAS Standard:
SCI.AAS.5.1- Recognize that matter is made of particles too small to be seen.


Science
SC2015 (2015)
Grade: 5
3 ) Examine matter through observations and measurements to identify materials (e.g., powders, metals, minerals, liquids) based on their properties (e.g., color, hardness, reflectivity, electrical conductivity, thermal conductivity, response to magnetic forces, solubility, density).


NAEP Framework
NAEP Statement::
P4.1: Objects and substances have properties. Weight (mass) and volume are properties that can be measured using appropriate tools.*

NAEP Statement::
P4.3: Matter exists in several different states; the most common states are solid, liquid, and gas. Each state of matter has unique properties. For instance, gases are easily compressed while solids and liquids are not. The shape of a solid is independent of its container; liquids and gases take the shape of their containers.


Unpacked Content
Scientific And Engineering Practices:
Planning and Carrying out Investigations
Crosscutting Concepts: Scale, Proportion, and Quantity
Disciplinary Core Idea: Matter and Its Interactions
Evidence Of Student Attainment:
Students:
  • Make observations and measurements to identify materials based on their properties.
Teacher Vocabulary:
  • color
  • hardness
  • reflectivity
  • electrical conductivity
  • thermal conductivity
  • response to magnetic forces
  • solubility
  • density
  • measurement (quantitative and qualitative)
  • data
  • observable properties
  • standard units
  • conductors
  • nonconductors
  • magnetic
  • nonmagnetic
Knowledge:
Students know:
  • Materials have different properties-color, hardness, reflectivity, electrical conductivity thermal conductivity, solubility, and density.
  • Measurements of a variety of properties can be used to identify materials.
  • Measurements should be made in standard units (e.g., grams & liters).
Skills:
Students are able to:
  • Identify the phenomenon through observations about materials, including color, hardness, reflectivity, electrical conductivity, thermal conductivity, response to magnetic forces, and solubility.
  • Identify the evidence and collect data about the observed objects in standard units (e.g., grams, liters).
  • Collaboratively plan the investigation.
  • Identify materials based on their properties.
Understanding:
Students understand that:
  • Standard units are used to measure and describe physical quantities of materials such as weight, time, temperature, and volume. These measurements will assist in the identification of the materials ( e.g. powders, metals, minerals, and liquids).
AMSTI Resources:
AMSTI Module:
Matter and Interactions

Alabama Alternate Achievement Standards
AAS Standard:
SCI.AAS.5.3- Classify materials (e.g., powders, metals, minerals, liquids) based on their properties (e.g., color, hardness, reflectivity, electrical conductivity, thermal conductivity, response to magnetic forces, solubility, density).


Tags: atom, liquid, molecule, particle, substance
License Type: Custom Permission Type
See Terms: https://www.acs.org/content/acs/en/terms.html
For full descriptions of license types and a guide to usage, visit :
https://creativecommons.org/licenses
AccessibilityVideo resources: includes closed captioning or subtitles
Comments
  This resource provided by:  
Author: Stephanie Carver
Alabama State Department of Education