ALEX Classroom Resource

  

Why Is It Colder in the Winter Than in the Summer?

  Classroom Resource Information  

Title:

Why Is It Colder in the Winter Than in the Summer?

URL:

https://www.readworks.org/article/Why-Is-It-Colder-in-the-Winter-Than-in-the-Summer/8b82c3e3-86bd-4d9d-b543-455db2ce41fd#!questionsetsSection:2902/articleTab:content/

Content Source:

Other
ReadWorks.org
Type: Learning Activity

Overview:

The teacher will present an informational text from the website, ReadWorks. Students will interact with this non-fiction text by annotating the text digitally. The students will answer the questions associated with the article as an assessment. This learning activity can be used to help explain the reason for Earth's seasons, serve as reinforcement after students have already learned this concept, or be used as an assessment at the conclusion of a lesson. 

Content Standard(s):
Science
SC2015 (2015)
Grade: 6
Earth and Space Science
1 ) Create and manipulate models (e.g., physical, graphical, conceptual) to explain the occurrences of day/night cycles, length of year, seasons, tides, eclipses, and lunar phases based on patterns of the observed motions of celestial bodies.


NAEP Framework
NAEP Statement::
E8.12: Seasons result from annual variations in the intensity of sunlight and length of day, due to the tilt of Earth's rotation axis relative to the plane of its yearly orbit around the Sun.

NAEP Statement::
E8.2: Gravity is the force that keeps most objects in the solar system in regular and predictable motion. These motions explain such phenomena as the day, the year, phases of the Moon, and eclipses.


Unpacked Content
Scientific And Engineering Practices:
Developing and Using Models
Crosscutting Concepts: Patterns
Disciplinary Core Idea: Earth's Place in the Universe
Evidence Of Student Attainment:
Students:
  • Create and manipulate a model that shows how the positions of the Earth and sun result in day and night at locations on Earth.
  • Create and manipulate a model that shows the movement of Earth around the sun during a year with the correct tilt of Earth throughout the modeling.
  • Create and manipulate a model that shows the tilt of the Earth in relationship to the sun which indicates seasons for both the Northern and Southern Hemispheres.
  • Create and manipulate a model that shows the position of the Earth and moon during high and low tides at different locations on Earth.
  • Create and manipulate a model that shows the position of the sun, Earth, and moon during solar and lunar eclipses.
  • Create and manipulate a model that shows the position of the sun, Earth, and moon during lunar phases.
Teacher Vocabulary:
  • Model
  • Earth
  • Moon
  • Sun
  • Orbit
  • Rotation
  • Axis
  • Tilted
  • Day
  • Night
  • Hour
  • Revolution
  • Constant
  • Orbital plane
  • Orientation
  • Solar Energy
  • Equator
  • Poles
  • Northern Hemisphere
  • Southern Hemisphere
  • Winter
  • Summer
  • Tides
  • Gravitational pull
  • Low tide
  • High tide
  • Eclipse
  • Solar eclipse
  • Lunar Eclipse
  • Lunar phases (new moon, waxing crescent, first quarter, waxing gibbous, full moon, waning gibbous, third quarter, waning crescent)
  • Illumination
Knowledge:
Students know:
  • Earth rotates on its tilted axis once in approximately 24 hours; this rotation is considered an Earth day. Due to the rotation of the Earth, the side of the Earth facing the sun experiences light (day); the side of the Earth facing away from the sun experiences dark (night).
  • The Earth-moon system revolves around the sun once in approximately 365 days; this revolution is considered an Earth year.
  • The distance between Earth and the sun stays relatively constant throughout the Earth's orbit.
  • The Earth's rotation axis is tilted with respect to its orbital plane around the sun. Earth maintains the same relative orientation in space, with its North Pole pointed toward the North Star throughout its orbit.
  • Solar energy travels in a straight line from the sun and hits different parts of the curved Earth at different angles — more directly at the equator and less directly at the poles.
  • Because the Earth's axis is tilted, the most direct and intense solar energy occurs over the summer months, and the least direct and intense solar energy occurs over the winter months.
  • The change in season at a given place on Earth is directly related to the orientation of the tilted Earth and the position of Earth in its orbit around the sun because of the change in the directness and intensity of the solar energy at that place over the course of the year.
  • Summer occurs in the Northern Hemisphere at times in the Earth's orbit when the northern axis of Earth is tilted toward the sun.
  • Summer occurs in the Southern Hemisphere at times in the Earth's orbit when the southern axis of Earth is tilted toward the sun.
  • Winter occurs in the Northern Hemisphere at times in the Earth's orbit when the northern axis of Earth is tilted away from the sun.
  • Winter occurs in the Southern Hemisphere at times in the Earth's orbit when the southern axis of Earth is tilted away from the sun.
  • A tide is the daily rise and fall of sea level.
  • Low tide is the lowest sea level at a particular time and place on Earth.
  • High tide is the highest sea level at a particular time and place on Earth.
  • Tides occur as a result of the moon's gravitational pull on the Earth.
  • Solar energy is prevented from reaching the Earth during a solar eclipse because the moon is located between the sun and Earth.
  • Solar energy is prevented from reaching the moon (and thus reflecting off of the moon to Earth) during a lunar eclipse because Earth is located between the sun and moon.
  • Because the moon's orbital plane is tilted with respect to the plane of the Earth's orbit around the sun, for a majority of time during an Earth month, the moon is not in a position to block solar energy from reaching Earth, and Earth is not in a position to block solar energy from reaching the moon.
  • A lunar eclipse can only occur during a full moon.
  • The moon rotates on its axis approximately once a month.
  • The moon orbits Earth approximately once a month.
  • The moon rotates on its axis at the same rate at which it orbits Earth so that the side of the moon that faces Earth remains the same as it orbits.
  • The moon's orbital plane is tilted with respect to the plane of the Earth's orbit around the sun.
  • Solar energy coming from the sun bounces off of the moon and is viewed on Earth as the bright part of the moon.
  • The visible proportion of the illuminated part of the moon (as viewed from Earth) changes over the course of a month as the location of the moon relative to Earth and the sun changes. This change in illumination is known as the lunar phase.
  • The moon appears to become more fully illuminated until "full" and then less fully illuminated until dark, or "new," in a pattern of change that corresponds to what proportion of the illuminated part of the moon is visible from Earth.
  • The lunar phase of the moon is a result of the relative positions of the Earth, sun, and moon.
Skills:
Students are able to:
  • Develop a model of the Sun-Earth-Moon systems and identify the relevant components.
  • Describe the relationships between components of the model.
  • Use patterns observed from their model to provide causal accounts for events and make predictions for events by constructing explanations.
Understanding:
Students understand that:
  • Patterns in the occurrences of day/night cycles, length of year, seasons, tides, eclipses, and lunar phases can be observed and explained using models based on observed motion of celestial bodies.
AMSTI Resources:
AMSTI Module:
Researching the Sun-Earth-Moon System

Alabama Alternate Achievement Standards
AAS Standard:
SCI.AAS.6.1- Use a model to show that Earth's moon moves around Earth, and Earth and its moon move around the sun; recognize the movements responsible for day/night and the length of a year.


Tags: Earths axis, motion, seasons, summer, winter
License Type: Custom Permission Type
See Terms: https://about.readworks.org/terms-of-use.html
For full descriptions of license types and a guide to usage, visit :
https://creativecommons.org/licenses
AccessibilityAudio resources: includes a transcript or subtitles
Text Resources: Content is organized under headings and subheadings
Comments

ReadWorks is a website that provides K-12 teachers with free literacy resources (About ReadWorks). ReadWorks has literary and informational texts on a variety of subjects and reading skills. You may narrow your search using grade level or Lexile level, making this website a wonderful tool for differentiation. Students will complete their work digitally, and you will provide their score and feedback digitally. This makes it easy to go paperless for this activity.

Prior to implementing this activity, you will need to sign up for an Educator Account on ReadWorks. After setting up an account, create a class from the Class Admin tab, this will provide you with a Class Code to give to students. Next, use the Find Content tab to search for the informational article that will be used during this activity, "Why Is It Colder in the Winter Than in the Summer?" After navigating to the article, click on the blue Assign button to assign it to your class.

Each student will need access to a digital device, such as a tablet or laptop. The first time students enter the website they will need to enter the Class Code that is listed on your Class Admin page. Alternatively, you can print the article and corresponding questions for students, if digital devices are not available. 

  This resource provided by:  
Author: Hannah Bradley
Alabama State Department of Education