ALEX Classroom Resource

  

Computer Science Fundamentals Unit 5 Course D Lesson 19: Binary Images With Artist (2018)

  Classroom Resource Information  

Title:

Computer Science Fundamentals Unit 5 Course D Lesson 19: Binary Images With Artist (2018)

URL:

https://curriculum.code.org/csf-18/coursed/19/

Content Source:

Code.org
Type: Lesson/Unit Plan

Overview:

This series of online lessons will have students learning to make images using on and off. This will help reinforce the fact that computers can do a multitude of things with 0s and 1s.

Students will be able to:
- create pictures using unique combinations of on and off.
- identify repeated sequences and break long codes up into smaller chunks that can be looped.
- utilize loops and binary code to recreate provided images.

Note: You will need to create a free account on code.org before you can view this resource.

Content Standard(s):
Digital Literacy and Computer Science
DLIT (2018)
Grade: 3
1) Use numbers or letters to represent information in another form.

Examples: Secret codes/encryption, Roman numerals, or abbreviations.

Unpacked Content
Evidence Of Student Attainment:
Students will:
  • use numbers and letters to represent information in another form.
Teacher Vocabulary:
  • encryption
  • secret codes
Knowledge:
Students know:
  • techniques for understanding how to representing information in another way using numbers or letters.
Skills:
Students are able to:
  • use letters or numbers to represent information in another form.
  • use a secret code to determine information represented in letters and/or numbers.
Understanding:
Students understand that:
  • numbers and/or letters can represent information in another way.
Digital Literacy and Computer Science
DLIT (2018)
Grade: 3
2) Analyze a given list of sub-problems while addressing a larger problem.

Example: Problem - making a peanut butter sandwich; sub-problem - opening jar, finding a knife, getting the bread.
Problem - design and share a brochure; sub-problem - selecting font, choosing layout.

Unpacked Content
Evidence Of Student Attainment:
Students will:
  • analyze a given list of sub-problems while addressing a larger problem.
Teacher Vocabulary:
  • sub-problem
Knowledge:
Students know:
  • strategies for analyzing sub-problems from a given list for a larger problem.
Skills:
Students are able to:
  • analyze given lists of sub-problems while addressing a larger problem.
  • identify the sub-problems for a larger problem.
Understanding:
Students understand that:
  • larger problems have sub-problems.
  • it can be easier to solve a large problem if you identify smaller sub-problems to tackle or solve.
Digital Literacy and Computer Science
DLIT (2018)
Grade: 3
7) Test and debug a given program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

Examples: Sequencing cards for unplugged activities, online coding practice.

Unpacked Content
Evidence Of Student Attainment:
Students will:
  • test a given program in a block
  • based visual programming environment using arithmetic operators, conditionals, and repetition in programs.
  • debug a given program in a block
  • based visual programming environment using arithmetic operators, conditionals, and repetition in programs.
  • collaborate with others.
Teacher Vocabulary:
  • test
  • debug
  • program
  • block-based visual programming environment
  • arithmetic operators
  • conditionals
  • repetition
Knowledge:
Students know:
  • strategies for debugging a given program.
  • arithmetic operators create a single numerical solution from multiple oprations.
  • conditionals are "if, then" statements that direct the program.
Skills:
Students are able to:
  • test a given program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.
  • debug a given program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.
Understanding:
Students understand that:
  • a given program must be tested and debugged to run correctly.
  • block-based visual programming uses arithemetic operators, conditionals, and repetition to function.
Digital Literacy and Computer Science
DLIT (2018)
Grade: 3
23) Implement the design process to solve a simple problem.

Examples: Uneven table leg, noise in the cafeteria, tallying the collection of food drive donations.

Unpacked Content
Evidence Of Student Attainment:
Students will:
  • implement the design process to solve a simple problem.
Teacher Vocabulary:
  • implement
  • design process
  • problem
Knowledge:
Students know:
  • the steps in the design process are to define the problem, research the problem, brainstorm and analyze ideas, imagine solutions, build a prototype and test it, and make improvements.
  • how to implement the design process to solve a simple problem.
  • how to identify a simple problem.
Skills:
Students are able to:
  • identify the steps in the design process.
  • apply the design process to a simple problem.
  • implement the steps in the design process to solve a simple problem.
Understanding:
Students understand that:
  • the steps in the design process are to define the problem, research the problem, brainstorm and analyze ideas, imagine solutions, build a prototype and test it, and make improvements.
Tags: artist, binary, decode, encode, string, translate
License Type: Custom Permission Type
See Terms: https://code.org/tos
For full descriptions of license types and a guide to usage, visit :
https://creativecommons.org/licenses
Accessibility
Comments
  This resource provided by:  
Author: Aimee Bates
Alabama State Department of Education