ALEX Classroom Resources

ALEX Classroom Resources  
   View Standards     Standard(s): [MA2019] REG-7 (7) 9 :
9. Use variables to represent quantities in real-world or mathematical problems and construct algebraic expressions, equations, and inequalities to solve problems by reasoning about the quantities.

a. Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.

b. Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality, and interpret it in the context of the problem.
[MA2019] ACC-7 (7) 18 :
18. Use variables to represent quantities in a real-world or mathematical problem and construct algebraic expressions, equations, and inequalities to solve problems by reasoning about the quantities.

a. Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.

b. Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.
[Grade 7, 9, and linear portion of Algebra I with Probability, 11]
Subject: Mathematics (7)
Title: Using Equations to Solve Problems
URL: https://aptv.pbslearningmedia.org/resource/our20-math-7611/using-equations-to-solve-problems/
Description:

Students solve problems that can be represented by equations in the form p(x + q) = r and px + q = r. They start by using tape diagrams to make sense of problems (MP1) and then choose other representations to use (MP5).

Grade 7, Episode 17: Unit 6, Lesson 11 | Illustrative Math



   View Standards     Standard(s): [MA2019] REG-7 (7) 9 :
9. Use variables to represent quantities in real-world or mathematical problems and construct algebraic expressions, equations, and inequalities to solve problems by reasoning about the quantities.

a. Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.

b. Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality, and interpret it in the context of the problem.
[MA2019] ACC-7 (7) 18 :
18. Use variables to represent quantities in a real-world or mathematical problem and construct algebraic expressions, equations, and inequalities to solve problems by reasoning about the quantities.

a. Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.

b. Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.
[Grade 7, 9, and linear portion of Algebra I with Probability, 11]
Subject: Mathematics (7)
Title: Different Options for Solving One Equation
URL: https://aptv.pbslearningmedia.org/resource/our20-math-7610/different-options-for-solving-one-equation/
Description:

The purpose of this video lesson is to practice solving equations of the form p(x + q) = r, and to notice that one of the two ways of solving may be more efficient depending on the numbers in the equation.

 

This resource includes the Different Options for Solving One Equation lesson printout and a Practice Problems handout.



   View Standards     Standard(s): [MA2019] (6) 18 :
18. Determine whether a value is a solution to an equation or inequality by using substitution to conclude whether a given value makes the equation or inequality true.
[MA2019] REG-7 (7) 9 :
9. Use variables to represent quantities in real-world or mathematical problems and construct algebraic expressions, equations, and inequalities to solve problems by reasoning about the quantities.

a. Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.

b. Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality, and interpret it in the context of the problem.
[MA2019] ACC-7 (7) 18 :
18. Use variables to represent quantities in a real-world or mathematical problem and construct algebraic expressions, equations, and inequalities to solve problems by reasoning about the quantities.

a. Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.

b. Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.
[Grade 7, 9, and linear portion of Algebra I with Probability, 11]
Subject: Mathematics (6 - 7)
Title: Solving Linear Inequalities with Negative Numbers
URL: https://aptv.pbslearningmedia.org/resource/mgbh.math.ee.inequality/solving-linear-inequalities-with-negative-numbers/
Description:

Solve an inequality that has negative numbers and a variable. This video focuses on using inverse operations to solve for a variable and the importance of flipping the inequality when multiplying or dividing by a negative number. This video was submitted through the Innovation Math Challenge, a contest open to professional and nonprofessional producers.



   View Standards     Standard(s): [MA2019] (6) 15 :
15. Write, read, and evaluate expressions in which letters represent numbers in real-world contexts.

a. Interpret a variable as an unknown value for any number in a specified set, depending on the context.

b. Write expressions to represent verbal statements and real-world scenarios.

c. Identify parts of an expression using mathematical terms such as sum, term, product, factor, quotient, and coefficient.

d. Evaluate expressions (which may include absolute value and whole number exponents) with respect to order of operations.
[MA2019] REG-7 (7) 9 :
9. Use variables to represent quantities in real-world or mathematical problems and construct algebraic expressions, equations, and inequalities to solve problems by reasoning about the quantities.

a. Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.

b. Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality, and interpret it in the context of the problem.
[MA2019] ACC-7 (7) 18 :
18. Use variables to represent quantities in a real-world or mathematical problem and construct algebraic expressions, equations, and inequalities to solve problems by reasoning about the quantities.

a. Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.

b. Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.
[Grade 7, 9, and linear portion of Algebra I with Probability, 11]
Subject: Mathematics (6 - 7)
Title: Solving Linear Equations with Negative Numbers
URL: https://aptv.pbslearningmedia.org/resource/mgbh.math.ee.equation/solving-linear-equations-with-negative-numbers/
Description:

Solve a linear equation that has negative numbers and a variable. This video focuses on using inverse operations to solve for a variable.

This video was submitted through the Innovation Math Challenge, a contest open to professional and nonprofessional producers and is part of the Math at the Core: Middle School collection.



   View Standards     Standard(s): [MA2015] AL1 (9-12) 16 :
16 ) Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. [A-REI1]

[MA2015] AL1 (9-12) 17 :
17 ) Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. [A-REI3]

[MA2015] AL2 (9-12) 4 :
4 ) Solve quadratic equations with real coefficients that have complex solutions. [N-CN7]

[MA2015] AL2 (9-12) 13 :
13 ) Use the structure of an expression to identify ways to rewrite it. [A-SSE2]

Example: See x4 - y4 as (x2)2 - (y2)2, thus recognizing it as a difference of squares that can be factored as (x2 - y2)(x2 + y2).

[MA2015] AL2 (9-12) 20 :
20 ) Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. [A-CED1]

[MA2015] AL2 (9-12) 24 :
24 ) Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise. [A-REI2]

[MA2015] AL2 (9-12) 29 :
29 ) Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [F-IF5]

Example: If the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.

[MA2015] ALT (9-12) 4 :
4 ) Solve quadratic equations with real coefficients that have complex solutions. [N-CN7]

[MA2015] ALT (9-12) 13 :
13 ) Use the structure of an expression to identify ways to rewrite it. [A-SSE2]

Example: See x4 - y4 as (x2)2 - (y2)2, thus recognizing it as a difference of squares that can be factored as (x2 - y2)(x2 + y2).

[MA2015] ALT (9-12) 20 :
20 ) Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. [A-CED1]

[MA2015] ALT (9-12) 24 :
24 ) Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise. [A-REI2]

[MA2015] ALT (9-12) 29 :
29 ) Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [F-IF5]

Example: If the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.

[MA2019] ACC-7 (7) 18 :
18. Use variables to represent quantities in a real-world or mathematical problem and construct algebraic expressions, equations, and inequalities to solve problems by reasoning about the quantities.

a. Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.

b. Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.
[Grade 7, 9, and linear portion of Algebra I with Probability, 11]
[MA2019] AL1-19 (9-12) 5 :
5. Use the structure of an expression to identify ways to rewrite it.

Example: See x4 - y4 as (x2)2 - (y2)2, thus recognizing it as a difference of squares that can be factored as (x2 - y2)(x2 + y2).
[MA2019] AL1-19 (9-12) 6 :
6. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

a. Factor quadratic expressions with leading coefficients of one, and use the factored form to reveal the zeros of the function it defines.

b. Use the vertex form of a quadratic expression to reveal the maximum or minimum value and the axis of symmetry of the function it defines; complete the square to find the vertex form of quadratics with a leading coefficient of one.

c. Use the properties of exponents to transform expressions for exponential functions.

Example: Identify percent rate of change in functions such as y = (1.02)t, y = (0.97)t, y = (1.01)12t, y = (1.2)t/10, and classify them as representing exponential growth or decay.
[MA2019] AL1-19 (9-12) 9 :
9. Select an appropriate method to solve a quadratic equation in one variable.

a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x - p)2 = q that has the same solutions. Explain how the quadratic formula is derived from this form.

b. Solve quadratic equations by inspection (such as x2 = 49), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation, and recognize that some solutions may not be real.
[MA2019] AL1-19 (9-12) 11 :
11. Create equations and inequalities in one variable and use them to solve problems in context, either exactly or approximately. Extend from contexts arising from linear functions to those involving quadratic, exponential, and absolute value functions.
[MA2019] AL1-19 (9-12) 15 :
15. Define a function as a mapping from one set (called the domain) to another set (called the range) that assigns to each element of the domain exactly one element of the range.

a. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Note: If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x.

b. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. Limit to linear, quadratic, exponential, and absolute value functions.
Subject: Mathematics (9 - 12), Mathematics (7 - 12)
Title: Applying the Quadratic Formula (Part 1): Algebra 1, Episode 24: Unit 7, Lesson 17 | Illustrative Math
URL: https://aptv.pbslearningmedia.org/resource/im20-math-ep24-717/applying-the-quadratic-formula-part-1/
Description:

In this video lesson, students return to some quadratic functions they have seen. They write quadratic equations to represent relationships and use the quadratic formula to solve problems that they did not previously have the tools to solve (other than by graphing). In some cases, the quadratic formula is the only practical way to find the solutions. In others, students can decide to use other methods that might be more straightforward (MP5).

The work in this lesson—writing equations, solving them, and interpreting the solutions in context—encourages students to reason quantitatively and abstractly (MP2).



   View Standards     Standard(s): [MA2015] AL1 (9-12) 17 :
17 ) Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. [A-REI3]

[MA2015] AL1 (9-12) 32 :
32 ) Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. [F-IF8]

a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. [F-IF8a]

b. Use the properties of exponents to interpret expressions for exponential functions. [F-IF8b]

Example: Identify percent rate of change in functions such as y = (1.02)t, y = (0.97)t, y = (1.01)12t, and y = (1.2)t/10, and classify them as representing exponential growth and decay.

[MA2015] AL2 (9-12) 4 :
4 ) Solve quadratic equations with real coefficients that have complex solutions. [N-CN7]

[MA2015] AL2 (9-12) 20 :
20 ) Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. [A-CED1]

[MA2015] ALT (9-12) 4 :
4 ) Solve quadratic equations with real coefficients that have complex solutions. [N-CN7]

[MA2015] ALT (9-12) 20 :
20 ) Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. [A-CED1]

[MA2019] ACC-7 (7) 18 :
18. Use variables to represent quantities in a real-world or mathematical problem and construct algebraic expressions, equations, and inequalities to solve problems by reasoning about the quantities.

a. Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.

b. Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.
[Grade 7, 9, and linear portion of Algebra I with Probability, 11]
[MA2019] AL1-19 (9-12) 6 :
6. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

a. Factor quadratic expressions with leading coefficients of one, and use the factored form to reveal the zeros of the function it defines.

b. Use the vertex form of a quadratic expression to reveal the maximum or minimum value and the axis of symmetry of the function it defines; complete the square to find the vertex form of quadratics with a leading coefficient of one.

c. Use the properties of exponents to transform expressions for exponential functions.

Example: Identify percent rate of change in functions such as y = (1.02)t, y = (0.97)t, y = (1.01)12t, y = (1.2)t/10, and classify them as representing exponential growth or decay.
[MA2019] AL1-19 (9-12) 9 :
9. Select an appropriate method to solve a quadratic equation in one variable.

a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x - p)2 = q that has the same solutions. Explain how the quadratic formula is derived from this form.

b. Solve quadratic equations by inspection (such as x2 = 49), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation, and recognize that some solutions may not be real.
[MA2019] AL1-19 (9-12) 11 :
11. Create equations and inequalities in one variable and use them to solve problems in context, either exactly or approximately. Extend from contexts arising from linear functions to those involving quadratic, exponential, and absolute value functions.
Subject: Mathematics (9 - 12), Mathematics (7 - 12)
Title: Solving Quadratic Equations With the Zero Product Property: Algebra 1, Episode 13: Unit 7, Lesson 4 | Illustrative Math
URL: https://aptv.pbslearningmedia.org/resource/im20-math-ep13-74/solving-quadratic-equations-with-the-zero-product-property/
Description:

In this video lesson, students learn about the zero product property. They use it to reason about the solutions to quadratic equations that each have a quadratic expression in the factored form on one side and 0 on the other side. They see that when an expression is a product of two or more factors and that product is 0, one of the factors must be 0. Students make use of the structure of a quadratic expression in factored form and the zero product property to understand the connections between the numbers in the form and the x-intercepts of its graph (MP7).



ALEX Classroom Resources: 6

Go To Top of page