ALEX Resources

Narrow Results:
Classroom Resources (5)


ALEX Classroom Resources  
   View Standards     Standard(s): [MA2019] ACC-8 (8) 27 :
27. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table). [Algebra I with Probability, 25]
[MA2019] ACC-8 (8) 30 :
30. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Note: Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; maximums and minimums; symmetries; and end behavior. Extend from relationships that can be represented by linear functions to quadratic, exponential, absolute value, and general piecewise functions. [Algebra I with Probability, 28]
[MA2019] ACC-8 (8) 33 :
33. Use the mathematical modeling cycle to solve real-world problems involving linear, quadratic, exponential, absolute value, and linear piecewise functions. [Algebra I with Probability, 31]
[MA2019] AL1-19 (9-12) 25 :
25. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).
[MA2019] AL1-19 (9-12) 28 :
28. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Note: Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; maximums and minimums; symmetries; and end behavior. Extend from relationships that can be represented by linear functions to quadratic, exponential, absolute value, and linear piecewise functions.
[MA2019] AL1-19 (9-12) 31 :
31. Use the mathematical modeling cycle to solve real-world problems involving linear, quadratic, exponential, absolute value, and linear piecewise functions.

[MA2019] MOD-19 (9-12) 9 :
9. Use the Mathematical Modeling Cycle to solve real-world problems involving the design of three-dimensional objects.

[MA2019] AL2-19 (9-12) 22 :
22. Use the mathematical modeling cycle to solve real-world problems involving polynomial, trigonometric (sine and cosine), logarithmic, radical, and general piecewise functions, from the simplification of the problem through the solving of the simplified problem, the interpretation of its solution, and the checking of the solution's feasibility.

Subject: Mathematics (8 - 12)
Title: Building Quadratic Functions to Describe Situations (Part 2)
URL: https://aptv.pbslearningmedia.org/resource/im20-math-ep6-66/building-quadratic-functions-to-describe-situations-part-2/
Description:

Previously in this video series, students used simple quadratic functions to describe how an object falls over time given the effect of gravity. In this video lesson, they build on that understanding and construct quadratic functions to represent projectile motions. Along the way, they learn about the zeros of a function and the vertex of a graph. They also begin to consider appropriate domains for a function given the situation it represents.

Students use a linear model to describe the height of an object that is launched directly upward at a constant speed. Because of the influence of gravity, however, the object will not continue to travel at a constant rate (eventually it will stop going higher and will start falling), so the model will have to be adjusted (MP4). They notice that this phenomenon can be represented with a quadratic function and that adding a squared term to the linear term seems to “bend” the graph and change its direction.



   View Standards     Standard(s): [MA2019] ACC-8 (8) 30 :
30. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Note: Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; maximums and minimums; symmetries; and end behavior. Extend from relationships that can be represented by linear functions to quadratic, exponential, absolute value, and general piecewise functions. [Algebra I with Probability, 28]
[MA2019] AL1-19 (9-12) 28 :
28. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Note: Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; maximums and minimums; symmetries; and end behavior. Extend from relationships that can be represented by linear functions to quadratic, exponential, absolute value, and linear piecewise functions.
[MA2019] AL2-19 (9-12) 17 :
17. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Note: Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; maximums and minimums; symmetries (including even and odd); end behavior; and periodicity. Extend to polynomial, trigonometric (sine and cosine), logarithmic, reciprocal, radical, and general piecewise functions.
Subject: Mathematics (8 - 12)
Title: Predator-Prey Cycles | Zombies and Calculus
URL: https://aptv.pbslearningmedia.org/resource/nvnd-math-zombiecalc1/zombies-and-calculus-part-1/
Description:

Learn about the math behind predator-prey population cycles in this video from NOVA Digital. In this example, zombie and human populations fluctuate. The zombie population increases as zombies convert humans into zombies. However, without enough humans to eat, zombies die and the population shrinks. The human population increases as humans reproduce but decreases as zombies eat humans. The populations of humans and zombies change through time according to a pair of differential equations. Because human and zombie populations are related, the growth rate of each population depends on the current numbers of both humans and zombies.



   View Standards     Standard(s): [MA2015] AL1 (9-12) 26 :
26 ) Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. [F-IF2]

[MA2019] AL1-19 (9-12) 15 :
15. Define a function as a mapping from one set (called the domain) to another set (called the range) that assigns to each element of the domain exactly one element of the range.

a. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Note: If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x.

b. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. Limit to linear, quadratic, exponential, and absolute value functions.
[MA2019] AL1-19 (9-12) 28 :
28. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Note: Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; maximums and minimums; symmetries; and end behavior. Extend from relationships that can be represented by linear functions to quadratic, exponential, absolute value, and linear piecewise functions.
Subject: Mathematics (9 - 12), Mathematics (9 - 12)
Title: Algebra I Module 3, Topic B: Functions and Their Graphs
URL: https://www.engageny.org/resource/algebra-i-module-3-topic-b-overview
Description:

In Module 3, Topic B, students connect their understanding of functions to their knowledge of graphing from Grade 8. They learn the formal definition of a function and how to recognize, evaluate, and interpret functions in abstract and contextual situations (F-IF.A.1, F-IF.A.2). Students examine the graphs of a variety of functions and learn to interpret those graphs using precise terminology to describe such key features as domain and range, intercepts, intervals where the function is increasing or decreasing, and intervals where the function is positive or negative. (F-IF.A.1, F-IF.B.4, F-IF.B.5, F-IF.C.7a).



   View Standards     Standard(s): [MA2019] AL1-19 (9-12) 6 :
6. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

a. Factor quadratic expressions with leading coefficients of one, and use the factored form to reveal the zeros of the function it defines.

b. Use the vertex form of a quadratic expression to reveal the maximum or minimum value and the axis of symmetry of the function it defines; complete the square to find the vertex form of quadratics with a leading coefficient of one.

c. Use the properties of exponents to transform expressions for exponential functions.

Example: Identify percent rate of change in functions such as y = (1.02)t, y = (0.97)t, y = (1.01)12t, y = (1.2)t/10, and classify them as representing exponential growth or decay.
[MA2019] AL1-19 (9-12) 11 :
11. Create equations and inequalities in one variable and use them to solve problems in context, either exactly or approximately. Extend from contexts arising from linear functions to those involving quadratic, exponential, and absolute value functions.
[MA2019] AL1-19 (9-12) 28 :
28. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Note: Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; maximums and minimums; symmetries; and end behavior. Extend from relationships that can be represented by linear functions to quadratic, exponential, absolute value, and linear piecewise functions.
Subject: Mathematics (9 - 12)
Title: Algebra I Module 3, Topic D: Using Functions and Graphs to Solve Problems
URL: https://www.engageny.org/resource/algebra-i-module-3-topic-d-overview
Description:

In Module 3, Topic D, students apply and reinforce the concepts of the module as they examine and compare exponential, piecewise, and step functions in a real-world context (F-IF.C.9). They create equations and functions to model situations (A-CED.A.1, F-BF.A.1, F-LE.A.2), rewrite exponential expressions to reveal and relate elements of an expression to the context of the problem (A-SSE.B.3c, F-LE.B.5), and examine the key features of graphs of functions, relating those features to the context of the problem (F-IF.B.4, F-IF.B.6).



   View Standards     Standard(s): [MA2015] AL1 (9-12) 5 :
5 ) Define appropriate quantities for the purpose of descriptive modeling. [N-Q2]

[MA2019] AL1-19 (9-12) 11 :
11. Create equations and inequalities in one variable and use them to solve problems in context, either exactly or approximately. Extend from contexts arising from linear functions to those involving quadratic, exponential, and absolute value functions.
[MA2019] AL1-19 (9-12) 12 :
12. Create equations in two or more variables to represent relationships between quantities in context; graph equations on coordinate axes with labels and scales and use them to make predictions. Limit to contexts arising from linear, quadratic, exponential, absolute value, and linear piecewise functions.
[MA2019] AL1-19 (9-12) 28 :
28. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Note: Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; maximums and minimums; symmetries; and end behavior. Extend from relationships that can be represented by linear functions to quadratic, exponential, absolute value, and linear piecewise functions.
Subject: Mathematics (9 - 12), Mathematics (9 - 12)
Title: Algebra I Module 5, Topic A: Elements of Modeling
URL: https://www.engageny.org/resource/algebra-i-module-5-topic-overview
Description:

Module 5, Topic A focuses on the skills inherent in the modeling process: representing graphs, data sets, or verbal descriptions using explicit expressions (F-BF.A.1a) when presented in graphic form in Lesson 1, as data in Lesson 2, or as a verbal description of a contextual situation in Lesson 3. They recognize the function type associated with the problem (F-LE.A.1b, F-LE.A.1c) and match to or create 1- and 2-variable equations (A-CED.A.1, A-CED.2) to model a context presented graphically, as a data set, or as a description (F-LE.A.2). Function types include linear, quadratic, exponential, square root, cube root, absolute value, and other piecewise functions. Students interpret features of a graph in order to write an equation that can be used to model it and the function (F-IF.B.4, F-BF.A.1) and relate the domain to both representations (F-IF.B.5). This topic focuses on the skills needed to complete the modeling cycle and sometimes uses purely mathematical models, sometimes real-world contexts.



ALEX Classroom Resources: 5

Go To Top of page