ALEX Resources

Narrow Results:
Learning Activities (2) Building blocks of a lesson plan that include before, during, and after strategies to actively engage students in learning a concept or skill. Classroom Resources (6)


ALEX Learning Activities  
   View Standards     Standard(s): [DLIT] (4) 22 :
16) Gather and organize data to answer a question using a variety of computing and data visualization methods.

Examples: Sorting, totaling, averaging, charts, and graphs.

[MA2019] (3) 16 :
16. For a given or collected set of data, create a scaled (one-to-many) picture graph and scaled bar graph to represent a data set with several categories.

a. Determine a simple probability from a context that includes a picture.

b. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled graphs.
Subject: Digital Literacy and Computer Science (4), Mathematics (3)
Title: Graph It!
Description:

This activity guides students through the process of creating a graph of a particular data set. Students can produce a bar graph that compares different categories, a line graph that shows a change in something over time, or a pie graph that shows percentages of a whole. Students will select the most appropriate graph choice, input data, create labels and titles, and make design choices to enhance the graphic representation of the data.

This activity results from the ALEX Resource Development Summit.




   View Standards     Standard(s): [DLIT] (4) 17 :
11) Discuss the digital divide as unequal access to technology based on differences such as income, education, age, or geographic location and locate resources in the community that can give people access to technology.

[DLIT] (4) 22 :
16) Gather and organize data to answer a question using a variety of computing and data visualization methods.

Examples: Sorting, totaling, averaging, charts, and graphs.

Subject: Digital Literacy and Computer Science (4)
Title: Who Has Access?
Description:

Students will collect and analyze data from the website, Broadband Now, to understand that not everyone has the same level of access to technology in the U.S. based on their geographic location. Data will be collected for each U.S. state and discussed with a partner and the whole class.

This activity was created as a result of the DLCS COS Resource Development Summit.




ALEX Learning Activities: 2

Go To Top of page
ALEX Classroom Resources  
   View Standards     Standard(s): [DLIT] (4) 19 :
13) Synthesize complex information from multiple sources in different ways to make it more useful and/or relevant.

[DLIT] (4) 22 :
16) Gather and organize data to answer a question using a variety of computing and data visualization methods.

Examples: Sorting, totaling, averaging, charts, and graphs.

Subject: Digital Literacy and Computer Science (4)
Title: My Media Choices
URL: https://www.commonsense.org/education/digital-citizenship/lesson/my-media-choices
Description:

We all make choices every day about the media we consume and create. But do kids understand what makes a media choice healthy or not? Hint: It's about more than just screen time. Use the activities in this lesson to give kids a framework for making informed media choices.

Students will be able to:
  • Learn the "What? When? How Much?" framework for describing their media choices.
  • Use this framework and their emotional responses to evaluate how healthy different types of media choices are.
  • Begin to develop their own definition of a healthy media balance.

Users will need to create a free account to access this resource. 



   View Standards     Standard(s): [DLIT] (4) 22 :
16) Gather and organize data to answer a question using a variety of computing and data visualization methods.

Examples: Sorting, totaling, averaging, charts, and graphs.

[DLIT] (6) 25 :
19) Track data change from a variety of sources.

Example: Use editing or versioning tools to track changes to data.

[DLIT] (9-12) 37 :
31) Create interactive data visualizations using software tools to help others understand real-world phenomena.

Subject: Digital Literacy and Computer Science (4 - 12)
Title: Dig the Data
URL: https://www.remc.org/21Things4Students/21/13-dig-the-data/
Description:

The word dig can be a metaphor for thinking through a problem or issue or figuring something out so that you can make a decision based on your findings. In this Thing, you will dig through the Quests to collect, organize and analyze data.

This activity contains ten Quests. You will learn to create spreadsheets and charts, use formulas, and make decisions based on data. Dig In!


LEARNING OBJECTIVES

When you have completed this activity you will:

  1. know how to analyze data and create different visual representations [Computational Thinker, Creative Communicator]

  2. understand how spreadsheets, charts, and visual representations can help organize, evaluate, and present data [Knowledge Constructor]

  3. know different ways of organizing and sharing abstract representations of data [Creative Communicator]



   View Standards     Standard(s): [DLIT] (3) 26 :
20) Compare and contrast human and computer performance on similar tasks to understand which is better suited to the task.

Examples: Sorting alphabetically, finding a path across a cluttered room.

[DLIT] (4) 22 :
16) Gather and organize data to answer a question using a variety of computing and data visualization methods.

Examples: Sorting, totaling, averaging, charts, and graphs.

[DLIT] (5) 8 :
2) Create an algorithm to solve a problem while detecting and debugging logical errors within the algorithm.

Examples: Program the movement of a character, robot, or person through a maze.
Define a variable that can be changed or updated.

[DLIT] (5) 9 :
3) Create an algorithm that is defined by simple pseudocode.

[DLIT] (6) 11 :
5) Identify algorithms that make use of sequencing, selection or iteration.

Examples: Sequencing is doing steps in order (put on socks, put on shoes, tie laces); selection uses a Boolean condition to determine which of two parts of an algorithm are used (hair is dirty? True, wash hair; false, do not); iteration is the repetition of part of an algorithm until a condition is met (if you're happy and you know it clap your hands, when you're no longer happy you stop clapping).

[DLIT] (7) 9 :
3) Create algorithms that demonstrate sequencing, selection or iteration.

Examples: Debit card transactions are approved until the account balance is insufficient to fund the transaction = iteration, do until.

Subject: Digital Literacy and Computer Science (3 - 7)
Title: Sorting Algorithms
URL: https://classic.csunplugged.org/sorting-algorithms/
Description:

Computers are often used to put lists into some sort of order, for example, names into alphabetical order, appointments or e-mail by date, or items in numerical order. Sorting lists helps us find things quickly, and also makes extreme values easy to see. If you sort the marks for a class test into numeric order, the lowest and highest marks become obvious.

If you use the wrong method, it can take a long time to sort a large list into order, even on a fast computer. Fortunately, several fast methods are known for sorting. In this activity, children will discover different methods for sorting and see how a clever method can perform the task much more quickly than a simple one.



   View Standards     Standard(s): [DLIT] (3) 13 :
7) Test and debug a given program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

Examples: Sequencing cards for unplugged activities, online coding practice.

[DLIT] (4) 13 :
7) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

[DLIT] (4) 22 :
16) Gather and organize data to answer a question using a variety of computing and data visualization methods.

Examples: Sorting, totaling, averaging, charts, and graphs.

[DLIT] (4) 25 :
19) Use data from a simulation to answer a question collaboratively.

[DLIT] (5) 8 :
2) Create an algorithm to solve a problem while detecting and debugging logical errors within the algorithm.

Examples: Program the movement of a character, robot, or person through a maze.
Define a variable that can be changed or updated.

[DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

[DLIT] (5) 14 :
8) Demonstrate that programs require known starting values that may need to be updated appropriately during the execution of programs.

Examples: Set initial value of a variable, updating variables.

[DLIT] (5) 27 :
21) Manipulate data to answer a question using a variety of computing methods and tools to collect, organize, graph, analyze, and publish the resulting information.

[DLIT] (5) 32 :
26) Connect data from a simulation to real-life events.

[DLIT] (6) 11 :
5) Identify algorithms that make use of sequencing, selection or iteration.

Examples: Sequencing is doing steps in order (put on socks, put on shoes, tie laces); selection uses a Boolean condition to determine which of two parts of an algorithm are used (hair is dirty? True, wash hair; false, do not); iteration is the repetition of part of an algorithm until a condition is met (if you're happy and you know it clap your hands, when you're no longer happy you stop clapping).

[DLIT] (6) 14 :
8) Create a program that initializes a variable.

Example: Create a flowchart in which the variable or object returns to a starting position upon completion of a task.

[DLIT] (7) 12 :
6) Create and organize algorithms in order to automate a process efficiently.

Example: Set of recipes (algorithms) for preparing a complete meal.

[DLIT] (7) 13 :
7) Create a program that updates the value of a variable in the program.

Examples: Update the value of score when a coin is collected (in a flowchart, pseudocode or program).

Subject: Digital Literacy and Computer Science (3 - 7)
Title: Sports
URL: https://csfirst.withgoogle.com/c/cs-first/en/sports/overview.html
Description:

Students use computer science to simulate extreme sports, make their own fitness gadget commercial, and create commentary for a big sporting event.

Sports is a complete theme designed to be completed over eight, 45-75 minute, sessions. For each activity, students will watch a series of videos and create one coding project with opportunities to personalize their work using “Add-Ons,” which are mini-coding challenges that build on top of the core project.

Be sure to review the Materials tab for the lesson plan, starter guide, and more.

Users will need a Google account to use this resource.



   View Standards     Standard(s): [DLIT] (3) 13 :
7) Test and debug a given program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

Examples: Sequencing cards for unplugged activities, online coding practice.

[DLIT] (4) 13 :
7) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

[DLIT] (4) 22 :
16) Gather and organize data to answer a question using a variety of computing and data visualization methods.

Examples: Sorting, totaling, averaging, charts, and graphs.

[DLIT] (4) 25 :
19) Use data from a simulation to answer a question collaboratively.

[DLIT] (5) 8 :
2) Create an algorithm to solve a problem while detecting and debugging logical errors within the algorithm.

Examples: Program the movement of a character, robot, or person through a maze.
Define a variable that can be changed or updated.

[DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

[DLIT] (5) 14 :
8) Demonstrate that programs require known starting values that may need to be updated appropriately during the execution of programs.

Examples: Set initial value of a variable, updating variables.

[DLIT] (5) 27 :
21) Manipulate data to answer a question using a variety of computing methods and tools to collect, organize, graph, analyze, and publish the resulting information.

[DLIT] (6) 11 :
5) Identify algorithms that make use of sequencing, selection or iteration.

Examples: Sequencing is doing steps in order (put on socks, put on shoes, tie laces); selection uses a Boolean condition to determine which of two parts of an algorithm are used (hair is dirty? True, wash hair; false, do not); iteration is the repetition of part of an algorithm until a condition is met (if you're happy and you know it clap your hands, when you're no longer happy you stop clapping).

[DLIT] (6) 14 :
8) Create a program that initializes a variable.

Example: Create a flowchart in which the variable or object returns to a starting position upon completion of a task.

[DLIT] (7) 12 :
6) Create and organize algorithms in order to automate a process efficiently.

Example: Set of recipes (algorithms) for preparing a complete meal.

[DLIT] (7) 13 :
7) Create a program that updates the value of a variable in the program.

Examples: Update the value of score when a coin is collected (in a flowchart, pseudocode or program).

[DLIT] (8) 9 :
3) Create an algorithm using a programming language that includes the use of sequencing, selections, or iterations.

Example: Use a block-based or script programming language
Step 1: Start
Step 2: Declare variables a, b and c.
Step 3: Read variables a, b and c.
Step 4: If a>b
      If a>c
         Display a is the largest number.
     Else
         Display c is the largest number.
   Else
      If b>c
         Display b is the largest number.
      Else
         Display c is the greatest number.
Step 5: Stop

[DLIT] (8) 11 :
5) Discuss the efficiency of an algorithm or technology used to solve complex problems.

[DLIT] (8) 13 :
7) Create a program that includes selection, iteration, or abstraction, and initializes, and updates, at least two variables.

Examples: Make a game, interactive card, story, or adventure game.

Subject: Digital Literacy and Computer Science (3 - 8)
Title: Music & Sound
URL: https://csfirst.withgoogle.com/c/cs-first/en/music-and-sound/overview.html
Description:

In Music & Sound, students use the computer to play musical notes, create a music video, and build an interactive music display while learning how programming is used to create music.

Music is a complete theme designed to be completed over eight, 45-75 minute, sessions. For each activity, students will watch a series of videos and create one coding project with opportunities to personalize their work using “Add-Ons,” which are mini-coding challenges that build on top of the core project.

Be sure to review the Materials tab for the lesson plan, starter guide, and more.

Users will need a Google account to use this resource.



   View Standards     Standard(s): [DLIT] (3) 26 :
20) Compare and contrast human and computer performance on similar tasks to understand which is better suited to the task.

Examples: Sorting alphabetically, finding a path across a cluttered room.

[DLIT] (4) 22 :
16) Gather and organize data to answer a question using a variety of computing and data visualization methods.

Examples: Sorting, totaling, averaging, charts, and graphs.

[DLIT] (7) 7 :
1) Create a function to simplify a task.

Example: Get a writing utensil, get paper, jot notes can collectively be named "note taking".

[DLIT] (7) 9 :
3) Create algorithms that demonstrate sequencing, selection or iteration.

Examples: Debit card transactions are approved until the account balance is insufficient to fund the transaction = iteration, do until.

Subject: Digital Literacy and Computer Science (3 - 7)
Title: Computer Science Discoveries Unit 1 Chapter 2 Lesson 6: Processing
URL: https://studio.code.org/s/csd1-2018/stage/6/puzzle/1
Description:

This lesson dives deeper into the concept of processing that was introduced as part of the definition of a computer. Pairs work together to put a deck of cards in order, a form of processing information. In the end, the class discusses what processing means within the context of solving information problems.

Note: You will need to create a free account on code.org before you can view this resource.



ALEX Classroom Resources: 6

Go To Top of page